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Asymptotic behavior of the average adjacencies for

skeleton-regular triangular and tetrahedral partitions

A. Plaza � M.C. Rivaray

Abstract

In this paper a general class of simplex partitions that we call skeleton-regular partitions are

studied. For any conforming mesh, the individual application of a skeleton-regular partition

produces a conforming mesh such that all the topological elements of the same dimension are

subdivided in the same number of son-elements. Every skeleton-regular partition has associated

special constitutive (recurrence) equations. We show that the asymptotic number of average ad-

jacencies of the topological elements de�ning the mesh is �nite, when the partition is iteratively

and globally applied over any initial conforming mesh. We prove that this limit is identical for

any skeleton-regular partition in 2D. On the contrary, in three dimensions di�erent values are

obtained depending on the considered partition. We study the average adjacencies associated

with the most common skeleton-regular partitions in 3D, and they are compared with the values

reported for actual tetrahedral meshes for �nite element calculations.

Key words: partitions, adjacencies, triangular and tetrahedral meshes.

AMS subject classi�cations: 51M20, 52B10.

1 Introduction

The kissing number of a convex body K is the maximum number of congruent copies of K that can

touch K without overlapping with each other. For instance, the kissing number of the 2D ball B2

is 6. The question about the number for the 3D ball B3 caused a dispute between Isaac Newton

and David Gregory. Newton conjectured that the answered was 12 while Gregory thought 13 was

possible. It took 180 years before the question was answered: Hoppe [1] proved that Newton was
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right [2]. Perhaps for this reason the kissing number of a convex body K is also known as the Newton

number of K.

On the other hand, in the area of numerical methods a considerable e�ort has been done for

designing and implementing a suitable distribution of points or elements into the problem domain.

Very often we are interested in measuring the goodness of the partition (or the triangulation). In this

sense several smoothing or improvement techniques have been developed, so a better triangulation

(in the simplicial case) can be achieved (see, for example references [3, 4]). Some topological and

geometrical regularity measures for simplices (triangles in 2D, tetrahedra in 3D) and for the whole

simplicial grid (triangulation) have been proposed in literature [5, 6]. For example, Kenji Shimada [6]

proposed in his Thesis the following one, for a triangulation � :

�� =
1

n

nX

i=1

jÆi �Dj;(1)

where D = 6 for triangles, and D = 12 for tetrahedra, and Æi represents the degree of node i, that

is the number of nodes connected to the i-th interior node, and n is the total number of interior

nodes in the domain. Thus, in general, as elements become more equilateral, the mesh irregularity

approaches 0, but vanishes only when all the nodes have D neighbors, a rare situation. Otherwise,

it has a positive value that designates how much the mesh di�ers from a perfectly regular triangular

lattice. Recently Buss and Simpson have proved that planar mesh re�nement cannot be both local

and regular [7], and in higher dimensions it is well known that there is not a regular simplicial

partition of the space.

In this paper we investigate the asymptotic behavior of the average of the degree of the nodes

when the number of global re�nements tends to in�nite, that is the asymptotic average of the degree

of the nodes. Moreover, all possible averages of the adjacencies of the topological elements are studied

for a class of simplex partitions. These special partitions that we call skeleton-regular partitions are

characterized because they subdivide all the topological elements of the same dimension (the elements

of the k-skeleton) of the mesh in the same number of topological son-elements, resulting besides a

conforming triangulation.

The paper is organized as follows. In the next section, we introduce some de�nitions and notations.

The third section is for explaining some of the most common simplex partions used in practice. Finally

the asymptotic behavior of the average of the adjacencies of the topological elements is presented for

regular partitions in 2 and 3 dimensions.
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2 De�nitions and notations

Some elementary de�nitions and notations are summarized here.

De�nition 2.1 (simplices) A closed subset T 2 R
n is called a (k)-simplex, 0 � k � n if T is the

convex linear hull of k + 1 vertices x0; x1; : : : ; xk 2 R
n :

T = [x(0); x(1); : : : ; x(k)] :=

8>><
>>:

kX

j=0

�jx
(j) j

kX

j=0

�j = 1; �j 2 [0; 1]; 0 � j � k

9>>=
>>;
:(2)

The vertex ordering is important in some partitions (cfr. [11]). Other times the vertex numbering

is di�erent in two simplices T and T 0 but still T and T 0 denote the same subset of Rn ; it is said that

T coincides with T 0 in the sense of sets. We are not going to use the vertex ordering in this study.

If k = n the T is simply called simplex or triangle of Rn . (2)- and (3)-simplices are called triangles

and tetrahedra as usual. In the following the simplices, or n�simplices will be called triangles, because

we are going to restrict our interest to two and three dimensions. So, from now on a triangle will be

either a 2D triangle or a 3D triangle (a tetrahedron).

De�nition 2.2 (triangulation) Let 
 be any bounded set in R2 , or R3 with no-empty interior, and

polygonal boundary @
, and consider a partition of 
 into a set of triangles � = ft1; t2; t3; : : : ; tng.

Then we say that � is a triangulation if the following properties hold:

1. 
 =
S
ti

2. interior(ti) 6= ;, 8ti 2 


3. interior(ti)
T
interior(tj), if i 6= j

De�nition 2.3 (conforming triangulation) A triangulation � of a bounded set 
 is called con-

forming (some authors prefer consistent, or compatible) if any pair of adjacent simplices share either

an entire face or edge, or a common vertex.

De�nition 2.4 (k-face) Let T = [x(0); x(1); : : : ; x(n)] be a (n)-simplex in R
n . A k-simplex S =

[y(0); y(1); : : : ; y(k)] is called a (k)-subsimplex or a (k)-face of T if there are indices 0 � i0 < i1 <

� � � ik � n such that y(j) = x(ij ) for 0 � j � k.

Obviously, the (0)- and (1)-faces of T are just its vertices and edges, respectively. The number of

(k)-faces of an (n)-simplex T is
�
n+1
k+1

�
. Note that the previous relation is a trivial adjacency relation

because all simplicial meshes verify it. The focus of this paper is the study of non-trivial relations

and the study of their averages when a particular partition is recoursively applied to an initial mesh.
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De�nition 2.5 (skeleton) Let � be any n-dimensional (n = 2 or 3) conforming triangular mesh.

The k-skeleton of � is the union of its k-faces. The (n� 1)-skeleton is also call the skeleton [8].

For instance, the skeleton of a triangulation in three dimensions is comprised of the faces of the

tetrahedra, and in two dimensions the skeleton is the set of the edges of the triangles. It should be

noted however, that the skeleton can be understood as a new triangulation: if � is a 3-D conforming

triangulation in R3 , skt(�) ia a 2-D triangulation embedded in R3 . Furthermore, if � is conforming,

then skt(�) is also conforming.

Note that if we de�ne some simplex partition over a conforming triangulation in which every

element is divided into the same number of son-elements, and this hold also for the skeleton elements,

the iterative application of such partition to a conforming triangulation always yield in another (�ner)

conforming triangulation.

De�nition 2.6 (skeleton-regular partition) For any triangle or tetrahedron t, a partition of t

will be called skeleton-regular if the following properties hold:

1. All the topological elements of the same dimension, that is all the elements of the k-skeleton

(0 � k < n) are subdivided in the same number of son-elements.

2. The meshes obtained by application of the partition to any individual element in any conform-

ing triangulation are conforming.

De�nition 2.7 (constitutive equations) When a skeleton-regular partition is applied to any ini-

tial mesh, there exist recurrence relations between the number of topological elements in the re�ned

mesh and the number of topological elements in the unre�ned mesh. These recurrence equations will

be called constitutive equations of the partition.

In the following we shall show that di�erent partitions may have the same constitutive equations,

and consequently they have the same asymptotic average numbers of topological adjacencies.

De�nition 2.8 (equivalent partitions) Two partitions of the same element will be called equiv-

alent in average or topologically equivalent in average if they have the same constitutive relations.

3 Skeleton-regular partitions

In this section we introduce some of the most well known skeleton-regular partitions in two and three

dimensions. All of them are based on edge bisection.
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3.1 2-D Skeleton-regular partitions

De�nition 3.1 (4T similar partition) The original triangle is divided into four son-triangles by

connecting the midpoints of the father-triangle by straight line segments parallel to the sides.

Note that according with the de�nition, all the triangles are similar to the original one (see

Figure 1(a)). This is one of the simplest partitions of triangles considered in literature (see for

example [9, 10]). Bey notes in [11] that this is the 2-D version of the Freudenthal's algorithm [12].

De�nition 3.2 (4T-LE partition) 4T partition bisects the triangle also in four triangles as it is

shown in Figure 1(b). The triangle is �rst subdivided by its longest edge, and then the two resulting

triangles are bisected by the midpoint of the common edge with the original triangle. In the following

this partition will be called 4T-LE partition.

Longest-edge partitions have been studied by Rivara (see, for instance [13, 14]). 4T-LE partition

is also very similar to the newest-vertex insertion method by Mitchell [15]. In fact, in many cases,

depending on the geometry of the initial 2D triangulation, if the longest edge is chosen as the re�ning

edge in the newest-vertex insertion method, then both are equivalent.

De�nition 3.3 (2-D Baricentric partition) For any triangle t the baricentric partition of t is

de�ned as follows:

1. Put a new node P at the baricentric point of t, and put new nodes at the midpoints of the

edges.

2. Join the baricentric point P with the vertices of the edges, and with the nodes at the midpoints

of the edges. (See Figure 1(c)).

De�nition 3.4 (4T-SE partition) It is the partition in four triangles in which the shortest-edge

of the initial triangle is chosen to perform the �rst bisection, and then we proceed as in the 4T-LE

partition. (See Figure 1(d)).

It is worth pointing out here that in the similar and in the baricentric partition all the edges

play the same role at parititioning the triangle, but this is not true for the 4T-LE partition, and the

4T-SE partition, in which the longest and the shortest edges are respectively distinguished edges.

Remark 3.1 Note that di�erent partitions can have the same recurrence associated equations, be-

cause these equations depend only on the number of son-elements for each particular original element.

For example, 2-D similar partition, 4T-LE partition and 4T-SE partition have all the following con-

stitutive equations:
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(c)

(a) (b)

(d)

Figure 1: Four partitions in 2D

Nn = Nn�1 + En�1

En = 2� En�1 + 3� Fn�1

Fn = 4� Fn�1:

(3)

where Nn, En, and Fn are respectively the numbers of nodes, edges, and triangles in the mesh

obtained after n applications of global re�nement, that is after partitioning n times all the elements

of the initial mesh.

In general an skeleton-regular simplex partition in 2-D will have the following constitutive equa-

tions:

Nn = Nn�1 + a� En�1 + b� Fn�1

En = c� En�1 + d� Fn�1

Fn = e� Fn�1:

(4)

where a is the number of nodes per edge, b the number of internal nodes per triangle, c the number

of son-edges per edge, d the number of internal edges per triangle, and e the number of son-triangles

per triangle. Note that these parameters determine the skeleton-regular partition. We shall prove

that the asymptotic average relations are independent of these parameters, and hence all the 2-D

skeleton-regular partitions show the same behavior in the limit of the average adjacencies, that is all

the 2-D skeleton-reguar partitions are topologically equivalent in average.

3.2 3-D skeleton-regular partitions

In three dimensions several techniques have been developed in the last years for re�ning (and coarsen-

ing) tetrahedral meshes. A general overview can be found in [11]. Algorithms based on simple longest

edge bisection have been developed by Rivara and Levin [16], and by Muthukrisnan et al. [17]. This

re�nement partition is not considered in this work since applying the longest-edge bisection to all
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the tetrahedra to an initial mesh yields in general a not-confoming new mesh, and because if the LE

partition is recursively applied until the mesh become conforming, not all the edges are subdivided in

the same number of son-edges. Here, we resume brie
y the main partitions in eight sub-tetrahedra.

De�nition 3.5 (3-D Freudenthal-Bey partition) The original tetrahedron is divided into eight

son-tetrahedra by cutting o� the four corners by the midpoints of the edges (Figure 2) and the

remaining octahedron is subdivided further in one of the three di�erent ways corresponding to one of

three possible interior diagonals (Figure 3) [11, 12]. This interior diagonal has to be choosen carefully

in order to satisfy the stability condition, that is the non-degeneracy of the partition.

Figure 2: First step of 3-D Freudenthal-Bey partition

Figure 3: The three possibilities for dividing the interior octahedron into four tetrahedra

Bey has proved recently [11] that this partition presents an optimal number of congruence classes

generated by recursive re�nements, even in general dimension n.

De�nition 3.6 (8T-LE partition) The original tetrahedron is divided into eight son-tetrahedra

by performing the 4T-LE partition of the faces, and then subdividing the interior of the tetrahedra

in a consistent manner with the performed division in the 2-skeleton, see [18, 19, 20].

It has been proved [20] that the 8T-partition can be achieved by performing bisections by the

midpoints of the edges of the original tetrahedron after ordering the edges by their lenght.

Theorem 3.1 For any tetrahedron t of unique longest-edge, the 8T-LE partition of t is getting by:

1. LE-bisection of t producing tetrahedra t1, t2.
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�
�
�
�

Figure 4: Re�nement patterns for the 8T-LE partition

2. Bisection of ti, for i = 1; 2, by the midpoint of the unique edge of ti which is also the longest

edge of a common face of ti with the original tetrahedron t, producing tetrahedra tij, for j = 1; 2.

3. Bisection of each tij by the midpoint of the unique edge equal to an edge of the original

tetrahedron.

It seams that this partition does not create a �nite number of congruence classes when it is

applied recoursively over an initial triangulation, and that the number of congruence classes depend

on the geometry of the initial triangulation, in a similar way that it happens in 2D. However it has

been sugested in [20], that the partition has a self-improvement property in the case of bad shaped

triangulations.

Although 8T-LE partition is based on the length of the edges, and on the associated classi�cation

of the edges [18, 20] it yields in some cases to the same division of the tetrahedra as other patitioning

patterns, like those by B�ansch [21], Kossaczk�y [22], or Liu and Joe [4]. It is not our aim here to

compare with detail all these re�nement algorithms. Note, however, that even in the cases in which

the algorithms do not partitionate the mesh in the same way, these partitions are topologically

equivalent, or topologically equivalent in average, since all divide equal dimension elements in the

same number of son elements. They divide the edges into two edges, the triangular faces into four

triangles, and the tetrahedra into eight son-tetrahedra.

De�nition 3.7 (3-D Baricentric partition) For any tetrahedron t the baricentric partition of t

is de�ned as follows:

1. Put a new node P at the baricentric point of t, put new nodes at the baricentric points of the

faces of t, and put new nodes at the midpoint of the edges of t.

2. In each face of t do the baricentric triangular partition of the face. (See Figure 1(c) for the

2-dimensional case).

3. Join the baricentric point P with all the vertices of t, and with all the new nodes introduced

before. (See Figure 5).
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Figure 5: 3D Baricentric partition

4 Adjacency relations of the topological elements of the

mesh

Beall and Shephard in [23] have studied the adjacency relations of the topological elements and have

used it to analyze the storage requirements for the meshes commonly used in the �nite element

computations.

As we are going to restrict our study to simplex partitions in two and three dimensions, we do not

need very sophisticated notations and de�nitions. In order to �x the manner in which the adjacency

relations are going to be denoted, let us give an example:

The number of elements type E per each element of type F will be written as #(E per F ).

We only distinguish between trivial and non-trivial adjacency relations, as follows:

De�nition 4.1 A topological element t will be called interior element to some domain 
 if interior(t) �

interior(
). In other case t is called exterior to 
.

De�nition 4.2 An adjacency relation will be called trivial if all interior elements verify the adjacency

relation.

For example the number of edges per triangle is allways three, so the relation #(edges per triangle) =

3 is a trivial relation.

In 2D triangular partitions, the trivial adjacency relations are:

#(nodes per edge) = 2

#(nodes per triangle) = 3

#(edges per triangle) = 3

#(triangles per edge) = 2

In 3D tetrahedral partitions, the trivial adjacency relations are:

#(nodes per edge) = 2
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#(nodes per face) = 3

#(nodes per tetrahedon) = 4

#(edges per face) = 3

#(edges per tetrahedron) = 6

#(faces per tetrahedron) = 4

#(tetrahedra per face) = 2

Note that trivial relations are the number of k-faces of the j-simplices, where k � j � n, and

n = 2 or n = 3. Besides there is another trivial relation: the number of n-simplices per (n� 1)-face.

De�nition 4.3 An adjacency relation will be called non-trivial if not all interior elements in all the

possible meshes when a global partition in applied verify that relation.

In the case of non-trivial adjacency relations we will consider the average of each adjacency

relation over all the elements in the triangulation. For instance to denote the average of triangles

per node we will write Av#(triangles per node).

5 Asymptotic results of the adjacency relations

Let �0 be an initial triangulation, in 2 or 3 dimensions, in which some skeleton-regular partition in

recursively applied. If we note by N0, E0, F0, and T0, respectively the number of nodes, edges, faces

and tetrahedra in �0 then the number of topological elements into the subsequent levels of meshes

�n depend, by the constitutive equations, on the number of elements of the previous level of mesh

�n�1. Besides, the average of the adjacency relations depend on the number of di�erent topological

elements in the mesh as the following lemmas establish.

Lemma 5.1

Let �n a 2-D triangulation with Nn nodes, En edges, and Tn triangles. Then, the non-trivial adjacency

relations, in average, are:

Av#(triangles per node) =
3� Tn

Nn

Av#(edges per node) =
2� En

Nn

and these two numbers are the same.
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Proof Let us see �rst the average of triangles per node. Since we are calculating an average per

node, the denominator has to be Nn. About the numerator, note that it should be

nX

i=1

nT (i);(5)

where nT (i) represents the number of triangles sharing node i. That is, we have to add the number

of triangles per each node, but this sum is equal to the sum of the number of nodes per triangle, so

nX

i=1

nT (i) = 3Tn:(6)

Note that for the average number of edges per node the reasoning is the same. This follows from

the fact that the average number of triangles per edge is #(triangles per edge) = 2 = 3�Tn
En

, so

3� Tn = 2� En, and the proof is completed.

Lemma 5.2

Let �n a 3-D triangulation with Nn nodes, En edges, Fn faces, and Tn tetrahedra. Then, the non-trivial

adjacency relations are:

Av#(tetrahedra per edge) =
6� Tn

En

Av#(faces per edge) =
3� Fn

En

Av#(tetrahedra per node) =
4� Tn

Nn

Av#(faces per node) =
3� Fn

Nn

Av#(edges per node) =
2� En

Nn

Proof The argument is the same as in Lemma 5.1.

In order to calculate the asymptotic behavior of the average adjacencies of the topological elements

of a particular skeleton-regular partition, we have to solve the constitutive equations associated to

that partition. This can be done by means of generation functions [26] or even, by using a symbolic

calculus package like MAPLE c
 [27].

The constitutive equations can be solved easily writing the equations in matricial form, if the

associated matrix is diagonalizable [27], following this classic theorem [24]:
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Theorem 5.1

Let un = Anu0 a di�erence equation, in which matrix A is diagonalizable, that is there exists a non-

singular matrix S, such that A = SDS�1 with D being a diagonal matrix. Then un = SDnS�1u0.

Next we report the results relative to the partitions of Section 3.

Theorem 5.2

Let � be a (conforming) triangular mesh. For any skeleton-regular partition let Nn; En; Tn be re-

spectively the total number of nodes, edges, and triangles after the n-th partition application. Then

the asymptotic average adjacency numbers of topological elements are independent of the particular

partition of each triangle and these numbers are as follows.

lim
n!1

Av#(triangles per node) = lim
n!1

3� Tn

Nn

= 6

lim
n!1

Av#(edges per node) = lim
n!1

2� En

Nn

= 6

Proof The constitutive equations 4 associated to a general skeleton-regular partition in a 2D tri-

angulation can be written in matrix form as follows:

un =

0
BB@

Nn

En

Tn

1
CCA =

0
BB@

1 a b

0 c d

0 0 e

1
CCA �

0
BB@

Nn�1

En�1

Tn�1

1
CCA = A � un�1 = An � u0 = An �

0
BB@

N0

E0

T0

1
CCA(7)

where N0, E0, and T0 are the initial values of the number of nodes, edges and triangles respectively.

Note that matrixA is non-singular since c = #(edges per edge) > 1 and e = #(triangles per triangle) >

1. Furthermore, c 6= e, since c = a+ 1, b = 1� e + d. Finally, from Euler's relation for the vertices,

edges and triangles applied to the �rst partition of a single triangle we get 2 � d = 3 � e� c.

So, since c 6= e and both are greater than 1, the matrix A de�ning the constitutive equation is

diagonalizable, and hence we can apply Theorem 5.1, to get the following value for un:

un =

0
BB@

Nn

En

Tn

1
CCA =

0
BB@

�
1 + 1

2
(1 + 3a+ 2b)n � 3

2
(a + 1)n

�
T0 + (�1 + (a+ 1)n)E0 +N0�

3
2
(1 + 3a+ 2b)n � 3

2
(a+ 1)n

�
T0 + (a+ 1)nE0

(1 + 3a+ 2b)n T0

1
CCA(8)

Once the recurrence equations have been solved, taking limits we obtain:
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lim
n!1

3� Tn

Nn

= lim
n!1

3� (1 + 3a+ 2b)n T0�
1 + 1

2
(1 + 3a+ 2b)n � 3

2
(a + 1)n

�
T0 + (�1 + (a+ 1)n)E0 +N0

=

= lim
n!1

3� (1 + 3a+ 2b)n T0�
1
2
(1 + 3a+ 2b)n

�
T0

= 6

lim
n!1

2� En

Nn

= lim
n!1

2�
�
3
2
(1 + 3a+ 2b)n � 3

2
(a + 1)n

�
T0 + (a + 1)nE0�

1 + 1
2
(1 + 3a+ 2b)n � 3

2
(a + 1)n

�
T0 + (�1 + (a+ 1)n)E0 +N0

=

= lim
n!1

2�
�
3
2
(1 + 3a+ 2b)n

�
T0�

1
2
(1 + 3a + 2b)n

�
T0

= 6

In 3D the situation about the asymptotic behavior of the adjacency relations between the topo-

logical elements in the mesh is quite di�erent. Now we obtain di�erent values for the average limit

depending on the particular partition considered. In the following we show the results for the parti-

tions presented in Section 3.

For example in the 8T-LE partition the average limit for the adjacencies between the topological

elements is presented in the following theorem:

Theorem 5.3

Let � be a (conforming) initial tetrahedral mesh in which the 8T-LE partition is recursively applied.

Then the asymptotic average non-trivial adjacencies are the following:

lim
n!1

Av#(tetrahedra per edge) = lim
n!1

6� Tn

En

=
36

7

lim
n!1

Av#(tetrahedra per node) = lim
n!1

4� Tn

Nn

= 24

lim
n!1

Av#(faces per edge) = lim
n!1

3� Fn

En

=
36

7

lim
n!1

Av#(faces per node) = lim
n!1

3� Fn

Nn

= 36

lim
n!1

Av#(edges per node) = lim
n!1

3� En

Nn

= 14

Proof Note �rst that the constitutive equations for the 8T-LE partition are:

Nn = Nn�1 + En�1

En = 2� En�1 + 3� Fn�1 + Tn�1

Fn = 4� Fn�1 + 8� Tn�1

Tn = 8� Tn�1

(9)
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or in matrix form:

un =

0
BBBB@

Nn

En

Fn

Tn

1
CCCCA

=

0
BBBB@

1 1 0 0

0 2 3 1

0 0 4 8

0 0 0 8

1
CCCCA
�

0
BBBB@

Nn�1

En�1

Fn�1

Tn�1

1
CCCCA

= A � un�1(10)

Matrix A is diagonalizable, and:

0
BBBB@

1 1 0 0

0 2 3 1

0 0 4 8

0 0 0 8

1
CCCCA

=

0
BBBB@

�4
3

7
3

�7
6

7
6

0 7
3

�7
2

7
6

0 0 �7
3

2

0 0 0 1

1
CCCCA
�

0
BBBB@

1 0 0 0

0 2 0 0

0 0 4 0

0 0 0 8

1
CCCCA
�

0
BBBB@

�3
4

3
4

�3
4

3
4

0 3
7

� 9
14

11
14

0 0 �3
7

6
7

0 0 0 1

1
CCCCA

(11)

Taking into account Theorem 5.1 the constitutive equations are solved and the solution is:

0
BBBB@

Nn

En

Fn

Tn

1
CCCCA

=

0
BBBB@

�
1
6
8n � 4n + 11

6
2n � 1

�
T0 +

�
1� 3

2
2n + 1

2
4n
�
F0 + (�1 + 2n)E0 +N0�

7
6
8n � 3 � 4n + 11

6
2n
�
T0 +

�
�3

2
2n + 3

2
4n
�
F0 + 2nE0

(2 � 8n � 2 � 4n)T0 + 4nF0

8nT0

1
CCCCA

(12)

where N0, E0, F0, and T0 are the number of nodes, edges, faces and tetrahedra in the initial tri-

angulation. Taking limits in the appropriate quotiens as in Theorem 5.2 we obtain the asymptotic

average adjacencies.

Remark 5.1 Since the 3D Freudenthal-Bey partition is equivalent in average to the 8T-LE partition,

they have the same asymptotic adjacencies.

Theorem 5.4

Let � be a (conforming) initial tetrahedral mesh in which the baricentric partition is recursively

applied. Then the asymptotic average adjacencies are the following:

lim
n!1

Av#(tetrahedra per edge) = lim
n!1

6� Tn

En

=
66

13

lim
n!1

Av#(tetrahedra per node) = lim
n!1

4� Tn

Nn

= 22

lim
n!1

Av#(faces per edge) = lim
n!1

3� Fn

En

=
66

13
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lim
n!1

Av#(faces per node) = lim
n!1

3� Fn

Nn

= 33

lim
n!1

Av#(edges per node) = lim
n!1

3� En

Nn

= 13

Remark 5.2 It is inmediate to proof that, in the same way that in 2D

Av#(triangles per node) = Av#(edges per node),

in three dimensions we have that

Av#(tetrahedra per edge) = Av#(faces per edge)

6 Concluding remarks

In this communication we have shown the average adjacencies for skeleton-regular triangular and

tetrahedral partitions. The study of the asymptotic behavior of the partitions based on recurrence

equation system could be a clue in the proof of the non-degeneracy or stability properties of some

local re�nement algorithms in 3D and higher dimensions based on these partitions. This study can

be applied to other polyhedral or polygonal partitions of the space, not only simplicial partitions.
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