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SUMMARY

An adaptive refinement/derefinement algorithm of nested meshes is presented. Some definitions are
introduced. The main properties of the derefinement algorithm are remarked upon and its efficiency is
shown through two numerical examples: a time-dependent convection—diffusion problem with dominant
convection and a quasistationary problem.

1. INTRODUCTION

The traditional approach to the solution of evolution problems using adaptive finite-element
methods has proved to be very useful in this kind of problem.'™* However, in the topic of
nested meshes, using local refinement, if the areas to be refined change with time, the
appearance of a large number of nodes creates a difficulty. Many of these nodes, although once
necessary, are useless at the present moment,

An increment in the number of nodes in the mesh implies an increase in the number of
equations of the system to be solved. Therefore it seems necessary to develop a derefinement
algorithm capable of removing dupe nodes, in order to get a good approximation of the
numerical solution obtained in the previous time step and to allow for combination with a local
refinement. We have used triangular elements with three nodes and the 4-T algorithm of
Rivara*~® at the refining. With this combination (refinement and derefinement), we obtain
families of sequences of nested meshes which are more flexible than those obtained by local
refinement only and the number of equations does not increase excessively during the whole
evolutive process.®”’

Besides, the fact of using nested grids enables us to use the multigrid method easily, to solve
the system of equations associated with the finite-element method.*

2. THE DEREFINEMENT ALGORITHM
2.1. Definitions and properties

Let T= {r; < 2 < -~ < 74) be a sequence of nested triangular grids and 7; any triangulation
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of T. One node N of 7; will be called a proper node of 7; if it does not belong to any previous
mesh. In other cases, N will be called an inherited node in 7;. Similarly, the edges and elements
are named at each level. Proper nodes of 7; are called j-new nodes by Rivara.’

If an edge is divided in two at refining, it is called the father edge of these two, and these
are the son edges of the former. Similarly the father elements and son elements are defined.
As we are using the 4-T algorithm of Rivara at refining, an element has four sons or less.

When an element is refined, some edges appear inside it. These edges are called internal
edges; these edges are called j-new edges by Rivara.® On the boundary of the element some
edges appear as well. Now these edges are called external edges. In Figure 1, nodes N;, Nz and
N, are proper ones in 7;; edges f, and f; are external in 7;, f3 is internal and ¢, is inherited.

In this context, some properties are:

(i) Any proper element of some triangulation is either inherited in the following
triangulation or has its sons there.

(ii) If an element has no sons, it belongs to the finest mesh of the sequence of nested
triangulations.

These definitions and properties are important because in contrast to the refinement
algorithm in which only the last mesh is created, and the new one that is being created
are involved, in the derefinement algorithm all levels of meshes are involved.

The fundamental property of the derefinement algorithm is the following:

(iii) only those elements without successors, i.e. elements that belong to the finest mesh, can
be eliminated.

As the finest mesh is changing at derefining, an element will be able to be eliminated if, at
derefining, its successors have been previously eliminated.

2.2. Data structure

Each element, face or node in any level 7; € T has only one global number, Let NUMN,
NUMF and NUMEL be, respectively, the total numbers of different nodes, faces and elements
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(a) mesh 1.,

(b) mesh g

Figure 1. Example of refinement
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in the sequence T plus the ones introduced in the sack vectors (these vectors are defined later).
Let NUMP be the total number of nodes in 7. For each level 7; the actual numbers of nodes,

edges

and elements are known, named NN(j), NF(j) and NE(j), where 1 </ < n, n being the

number of levels in T.
The data structure can be summarized as follows:

(a)

(b)

(c)

(d)

(e)

Th

Structure vectors: IMNODE (1:NUMP), IMFACE(1: ISPF) and IMELEM((1:ISPE) for
the nodes, faces and elements, respectively. In IMNODE only the proper nodes of each
level are kept because if one node belongs to a particular mesh, it belongs to the
following meshes as well, so NUMP = NN(n). IMFACE and IMELEM keep the global
numbers of all faces and elements, respectively, of each level of T:

ISPF = >, NF(j) and ISPE = ), NE(j)
=1

i=1 J

With this data structure the implementation of the multigrid method is relatively
simple.
Genealogy vectors: IR[1:3,1: NUMF] and IXH[1:6,1: NUMEL]. For each edge, IR
reports the numbers of its son edges and its father edge. Similarly, for each element,
IXH gives us the number of its son elements, its father element and the local number
of its longest side.
Derefinement vectors: NODES(1: NUMN), NFACES(1: NUMF) and NELES (1:
NUMEL). For each node, edge or element, these vectors give us the level at which it
is proper and the sign of the vectors is used to control the derefinement procedure.
Sack vectors: NNSAC, NFSAC and NESAC. In these vectors, the global number of
nodes, edges and elements that have been eliminated are kept to be used in future
refinements.
Surrounding edge: IEX (1 : NUMN) . For each node IEX reports the number of the edge
at which that node is at the middle point.

is data structure allows an easy implementation of the refinement/derefinement algorithm

in standard finite-element codes.

2:3.

The derefinement procedure

Let T= {7, € 12 < -+ < 7,) be a sequence of nested triangular grids, where 7, represents the
initial mesh and 7, the finest mesh. Our goal is to obtain another sequence after derefining T,
called 79, ie. T9= |1 < 7§ < --- < 7} where m < n.

The derefinement algorithm can be described briefly in this form:

INPUT: Sequence T={n<7mn<-- <

Loop in levels of T; for j=n to 2, do:

1.

For each proper node of 7; the derefinement condition, which is defined in Section 2.4,
is evaluated and the nodes and edges which can be eliminated are pointed out with the
derefinement vectors.

Conformity of the arising new level j is ensured.

. (a) If some proper node of 7; remains new, nodal connections are defined for the new

level j. Genealogy vectors of 7; and 7;-; are modified.
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3. (b) In other cases, the current level j is deleted in the structure vectors. Genealogy vectors
of 7, are modified.

4. The changes in the mesh are passed on to the following meshes. The structure vectors are
compressed.

OUTPUT: Sequence 7%= [, < 74 < --. < 78}

The application of the derefinement algorithm to a sequence of five levels can be observed
in Figure 2. There, the first line represents the sequence 7. The second line shows the derefined
sequence T9. The white nodes are the proper nodes of each level capable of being selected for
evaluation; the black nodes are the proper nodes that will have to remain to ensure conformity.

We must take into account that only proper nodes are eligible in each mesh level, and out
of these, only those suitable to be cancelled out are taken for evaluation. This is due to the
fact that if NVis a particular node that cannot be cancelled and c is its surrounding edge, then
any node of the elements in which ¢ is an edge cannot be cancelled either. In this way we can
ensure that the meshes of the new sequence are nested. This allows us to evaluate the
derefinement condition in a minimum number of nodes, and only once for each of those.

Once the derefinement condition has been checked in all the eligible proper nodes of a
particular mesh, the conformity of the arising new level is ensured. Therefore, the conformity
of all meshes in each sequence is ensured, maintaining some nodes that, otherwise, given the
derefinement condition, might have been cancelled. For instance, in Figure 1, if N, remains,
N, remains too.

Once T is obtained, the equation number associated with each degree of freedom/node
must be redefined to apply again the finite-element solver, preserving the global number of
each node and the previous numerical solution.

2.4. Derefinement indicator

A proper node may be removed if the absolute difference between the values in this node
of the numerical solution and its corresponding interpolated function is less than a sufficiently
small parameter € > 0. That is, if uy, is the numerical solution for a given mesh and u{ is the
interpolated function of u, in the derefined mesh, we will get

|| un — uf || = sup | un(x) — ufi(x)| < &
X

Obviously, this derefinement indicator does not allow us to control the discretization error;
in an adaptive algorithm this control is usually performed by an error indicator in the
refinement process. It could be argued that the same error indicator should be used as a
derefinement indicator. However, when we use a time-step integration scheme, a good
approximation of the solution at time ¢, must be kept to calculate the approximation at time
In+1=1In+ Aty Then the described derefinement indicator can be considered optimal in the
sense that a given solution is approximated with a minimum number of nodes after derefining.
If 6 > 0 is a given tolerance for the error in the maximum norm, a practical criterion to choose
£ would be to take a value sufficiently smaller than 6, for example £ = 0-1 6. Alternatively, one
may choose for & a small fraction of | #||, or, depending on the problem, another
characteristic value of the range of the solution.

2.5. Comparison with Rivara’s algorithm

We should point out that our derefinement procedure differs in some ways from the one
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proposed by Rivara:*®

® We introduce a simple derefinement condition for the nodes of the mesh and not for the
elements.

® The molecular structure defined by Rivara is slightly more economical. However, our
data structure allows for an easy adaptation of the algorithm to existing standard finite-
element codes and can be more generally applied in the sense that different kinds of
problems and finite elements can be implemented without modification of the data
structure,
We do not need to distinguish if a particular node has been created as a consequence of
the creation of another at some previous level.
Our derefinement algorithm can be combined with the 2-T or 4-7 refinement algorithms
and, in both cases, the derefinement area can be very local.

3. NUMERICAL RESULTS

To verify the validity of the described algorithm we present two numerical examples. The
results confirm that the refinement/derefinement combination is very useful to solve time-
dependent problems in which moving refinement areas are required. The additional
computational time required by this algorithm amounts to less than 1 per cent of the total
execution time.

In neither of the two examples have we included a rigorous control of the error in the
maximum norm, so the second criterion indicated in Section 2.4 has been adopted.

3.1. A convection—diffusion problem

We consider the convection—diffusion linear problem defined in a two-dimensional domain
{2, a unit square domain centred at the point (0-5,0-5) of boundary T':
au
— 4 v VU=V (kVu)=r
at
where v=v(x) is the fluid velocity. The semi-implicit formulation used to approximate the
evolution convection—diffusion process and a discussion of the stability and consistency can
be found in Reference 9. There, the numerical integration scheme used is
2 n
¢ - d
W ALV [V = A" b — Aty Vu"+"\T’ 3 (v- vm%
i Ad

a%u"

At
+ — Lilj

2 i} T dxi X

We suppose null Neumann conditions on I' and a rotating velocity field, with
vr=wxi(l —x1)(x;-0-5) and vz=wx2(0-5—x;)(1 —x;). In the present application
w=2-5%10* k=1 and f=0. That is, a significant Peclet number is 3-125 x 10°.

Here we have used the following refinement indicator, %;, for an element Q;:

nf:hizlvuhl

h; being the diameter of ; and u the linear numerical solution in the triangular element.
The initial solution is a given function that is approximated in Figure 3(a) using the
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(a) (b)

(<)

Meshes and solutions of an evolution problem: (a) initial solution, = 0-0, 234 nodes; (b) t =0-00014, 864

Figure 3.
nodes: (c) 1= 0-00032, 919 nodes
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refinement/derefinement algorithm. This combination enables us to get a good approximation
with a minimum number of nodes.

In order to obtain the stationary solution (constant in this example), 2892 time steps have
been calculated. The adaptive strategy was: three refinements followed by the derefinement
procedure. The exact solution verifies max,, .| u(x,7)|= 1, and taking € = 0-001 we are sure
that the error introduced by derefinement is less than 1 per cent of this maximum value. The
time increases after each refinement. To evaluate the time increment, the stability conditions
have been considered.” In each time step, one multigrid iteration is enough to solve the system
of equations. Figure 3 shows some meshes and the respective solutions for different time steps.
Once the stationary state is approached, the derefinement algorithm reduces the sequence of
meshes to the first coarse level.

3.2. A quasistationary problem

Figure 4 shows the domain for a Poisson problem in which the function f of the second
member is time-dependent:

40if d(r) <r
0if d(t) >r

where r is the ratio of the circular source (shaded in Figure) and d(¢) the Euclidean distance
between (x;,x2) and the centre of the source that moves with angular velocity w = /2 rad/seg
counter-clockwise. We assume the Dirichlet condition (#=1) on I'; and the null Neumann
condition on TI';.

With respect to the derefinement condition we have taken £ = 0-009 using the argument of
the previous example. At each time step, the adaptive strategy used has been one global
refinement followed by the derefinement procedure. Figure 5 shows several results.

A multigrid method with conjugate gradient as smoothing has been applied to solve at each
step the linear system of equations producing convergence with a stabilized value of four
multigrid iterations.

flxi,x)= [

(0.5,1.5)

o1

(0,0) (1.5,0)

Figure 4. Domain for a quasistationary problem
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(b)
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Figure 5. Meshes and solutions of a quasistationary problem: (a) 7= 1, 838 nodes; (b) r=3-5, 959 nodes
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Remark. This example suggests another application of the derefinement algorithm. It can

be used as a local refinement procedure. Derefining after global refinement is thereby
equivalent to a local refinement. In this case the information obtained through two computed
solutions on successively refined meshes can be used to estimate the error by extrapolation.
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