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SUMMARY

In this work we study some remarkable properties of the longest-edge based refinement algorithms
for triangular unstructured meshes. The refinement algorithm considered in the present work is
based on the skeleton structure of a triangular mesh and divides the elements following the Four
Triangles Longest-Edge partition. The study also answers the important question of how the size of the
triangulation is affected when local refinement is applied. We prove both theoretically and empirically
that the propagation of a single triangle refinement asymptotically extends to a few neighbor adjacent
triangles. We found the limits of the propagation using two metrics which are related to the Longest-
Edge Propagation Path (LEPP). The geometric place where non terminal triangles are located within

each refined mesh is also investigated and some properties are presented.

KEY WORDS: mesh refinement; LEPP; longest edge bisection

1. INTRODUCTION

Triangulating a polygon plays a central role in Computational Geometry, and is a basic tool in
many other fields as for example in Computer Graphics, Finite Element Method, etc. [3], [7].

The problem can be formulated as follows: given N spatial points not in general position of
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a polygonal region, join them by non-intersecting straight line segments so that every region
internal to the polygon is a triangle (usually known as triangular mesh). The problem can also
be stated for three dimensions. A related problem that also finds a considerable interest is the
refinement of a mesh. The refinement problem can be described as any technique for modifying
a mesh involving the insertion of at least one additional vertex in order to produce meshes
with desired features: non-degeneracy of the elements, conformity and smoothness. Degeneracy
elements stand for the ocurrence of thin and long triangles, this can lead to undesirable
behavior affecting numerical stability and producing visual artifacts. Conformity refers to
the requirement that the intersection of non-disjoint triangles is either a common vertex or a
common side. A vertex in the interior of an edge is called non-conforming. The smoothness
condition states that the transition between small and large elements should be gradual. In
general, there are two possible strategies for refining a mesh: (1) local refinement, when the
process modifies a group of triangles and (2) global (also known as uniform) refinement, when
all triangles in the mesh are chosen for refining. Many criteria have been studied as to what
constitutes a ‘good’ triangulation [4], some of which involve maximizing the smallest angle,
minimizing the total edge length or maximizing triangle perimeter and these are common

criteria of both triangulation and refinement of meshes [1].

Several algorithms for the refinement of meshes have been developed in the last years.
Algorithms based on the Delaunay criterion are very used because they construct triangulations
assuring the criteria of the non-small angle [13] and producing nearly equiangular triangles.
A very known Delaunay based algorithm is the Ruppert’s algorithm [19] which comes with a
strong theoretical guarantee: all new angles, that is, angles not present in the input mesh, are
greater than 20°, [3, 19]. Bern and Eppstein, [5], shown how to triangulate arbitrary polygons
using a polynomial number of right and acute triangles. They provided two algorithms for
the triangulation and refinement problems: given a polygon with n sides, the triangulation
algorithm produce a new triangulation with ()(n?) non-obtuse triangles and for the refinement

algorithm with O(n*) non-obtuse triangles.

On the other hand, longest-side refinement algorithms [14, 15] guarantee the construction

of good quality irregular triangulations. This is due to three facts: (1) the known bound on

2
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the small angles of the triangles generated: all angles in subsequent refined triangulations are
greater than or equal to half the smallest angle in the input triangulation, (2) the smooth
irregular triangulation obtained and (3) the locality of the refinement process. However, a
questionable point of these algorithms as remarked by Rivara in [18] and Jones and Plassmann
in [10] is: How does refinement propagation (to assure the conformity) affect the size of the
triangulations? The expected answer should be: the minimum size such that the three previous
conditions hold. The question can also be expressed as: How does the propagation extend to
neighbor triangles in the mesh? The worst case is such that a single triangle refinement makes
all of triangles to be also refined, [10], see Figure 1. On the other hand, a more acceptable
answer is such that after refining a single triangle, the propagation extends only to a few
neighbor triangles and besides the smoothness of the result is assured. Of course, the difference
between these two situations depend on the geometry of the inital meshes. This paper copes
with this question and provides both theoretical and empirical evidences showing that the
iterative application of local or global refinement to an arbitrary unstructured triangular mesh
produces meshes in which the propagation of a single element refinement is reduced in each

stage, making it to tend to a fix constant.

Figure 1. Longest edge refinement propagation. The dependencies in the propagation when refining t

are indicated by arrows
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2. PRELIMINARIES. THE REFINEMENT AND THE PROPAGATION PROBLEM

The refinement of triangular meshes involves two main tasks. The first task considers the
partition of the target triangles and the second one the propagation or extension due to the

conformity.

Several manners for partitioning triangles have been studied in last years. The simplest way
to divide a triangle is the Simple Bisection which bisects the triangle into two subtriangles
by connecting the midpoint of one of the edges to the opposite vertex. If the longest edge is
chosen for the bisection, then it is called the Longest Edge Bisection. Similar Partition divides
the triangle into four triangles by connecting the midpoints of the edges by straight line
segments, producing four subtriangles which are similar to the original one. This partition has
been widely used in Finite Element computations [8]. Four Triangles Longest Edge Partition,
(4T-LE) bisects a triangle into four subtriangles where the triangle is first subdivided by its
longest edge, and then the two resulting triangles are bisected by joining the new midpoint
of the longest edge to the midpoint of the remaining two edges of the original triangle, see

Figure 2 (d). Rivara first developed a refinement algorithm based on the 4T-LE partition [15].

(b) © ©)

Figure 2. The four posible patterns in the 4T-LE refinement: (a) Bisection in two triangles, (b-c)

@

Division in three triangles and (d) Division in four triangles

The second task in the refinement problem is to ensure the conformity of the mesh. For this
purpose, it is necessary to determine additional irregular patterns which makes it possible to
extend the refinement to neighbor triangles. Bank et al. in [2] developed a conformity strategy
for the Similar Partition based on the simplest choice: connection of non-conforming nodes to
the opposite vertices of adjacent triangles. This scheme has the drawback that the new divided

triangles loose the good properties in terms of the interior angles and that the smoothness of
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the resulted mesh is not assured. Other strategy for the conformity process is based on the
length of the edges. In this case, the possible patterns in the 4T-LFE refinement to guarantee
the conformity can be seen in Figure 2. In this patterns, longest-edge of the non-conforming
triangles is always divided and therefore the refinement area extends for conformity in a kind
of ‘domino’ effect. We concentrate in this paper on the study of the propagation due to longest

edge refinement and for this purpose the following concepts and definitions are given in order:

Definition 1 (Longest edge neighbor) The longest edge neighbor of a triangle t is the
neighboring triangle t* which shares with t the longest edge of t.

In particular, when considering the Simple Bisection of a single triangle, the propagation
extends following the longest edge neighbors of the triangle. Note that the longest edge

neighbor, if exists, is unique.

Definition 2 (Longest Edge Propagation Path (LEPP)) The Longest FEdge Propagation
Path of a triangle t, as defined by Rivara in [15, 16], is the ordered list of all adjacent triangles
A={to=1t,t1,...,tn} such that t; is the longest edge neighbor triangle of t;_;.

Note that the LEPP provides the actual triangles to be refined when a given triangle is
choosen for refinement. As a consequence, the LEPP is the main structure of adjacent triangles
used by the algorithms. In [20, 21] is presented a version of the refinement algorithm that uses
an efficient data structure that explicity implements the LEPP. The LEPP concept has also
been used in combination with the Delaunay criterion to present a local refinement algorithm,

in [17].

Definition 3 (Exterior and interior triangle) Let 7 be a two dimensional triangular mesh of
a bounded domain 2. A triangle t € T is said to be exterior if t has an edge belonging to the

boundary of Q, 0. Otherwise, we say that t is an interior triangle of T.

Definition 4 (Terminal Triangles) Let A be the LEPP of a given triangle in any triangular
mesh 7. We say terminal triangles of T to either:
1. A single exterior triangle of longest edge in the boundary of the T (single terminal triangle),

or
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t ty
2 Triangle | LEPP
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Figure 3. LEPP’s resulted in the 4T-LE refinement of t

2. A pair of adjacent triangles sharing the longest edge (pair of terminal triangles).

Terminal triangles are the last triangles in the ordered path of triangles in LEPP’s, [16, 17].
As the ocurrence of single terminal triangles is only restricted to the boundary of a mesh, we
shall consider in this paper the pair of terminal triangles. For this reason, in the following we

shall refer to the pair of terminal triangles as terminal triangles.

If all the triangles in a mesh are terminal, this leads to a considerable simplification in
LEPP’s structures, since all the LEPP lists are comprised of two triangles (a pair of terminal
triangles). For example, in Figure 3, for a given interior triangle, the LEPP is comprised

exactly of two triangles.

Next definition introduces the concept of balanced mesh in relation with the amount of

terminal triangles in a mesh.

Definition 5 (Balanced mesh) Let T be a two dimensional triangular mesh, T is said to be
balanced if it is comprised of terminal triangles. In other case is said to be a non-balanced

mesh.

If 7 is a non-balanced mesh, the mesh obtained by the application of uniform 4 T-LE partition

to the mesh 7 is comprised of terminal triangles and some other triangles.

To measure the ratio between terminal triangles and the total number of triangles in a mesh

T, which is relevant to know how balanced is a mesh, we define the balancing degree as follows:

6
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Definition 6 (Balancing degree) Let 7 be a two dimensional triangular mesh containing T
triangles and TT terminal triangles. Then, the balancing degree of T, noted as B(7), is defined

as follows:
_TT

B(r) = —

(1)

Note that 0 < B(7) < 1 and in the case that B(7) = 1, then the mesh is balanced. It should
be noted that T'T" means the number of triangles belonging to some pair of terminal triangles,

S0, single terminal triangles are not considered in this formula.

Proposition 1. If a mesh 7 is such that the balancing degree is 0, then the conformity process

when refining any triangle to € T extends to the boundary of T.

Proof:
If B(r) = 0, then for any triangle to € 7, LEPP(ty) = {to,t1,-..,tn} Where t, is an exterior
triangle of 7 with its longest-edge in 82 . Therefore, when g is refined, the refinement extends

until ¢, is also divided. See Figure 1. O

@ (b)

Figure 4. (a) Balanced mesh, (b) Non-balanced mesh (shaded triangles are non terminal)

Figure 4 shows a balanced mesh in (a) and a non-balanced mesh in (b). From now on we

represent with a dashed line the longest-edge of triangles in a mesh.

A typical example of balanced mesh is the mesh comprised entirely of rectangular triangles

sharing the longest-edges. In such a mesh, if one applies uniform 47T-LFE refinement, then only

7
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similar triangles to the original ones are obtained, and all of them are terminal.

3. PROPAGATION PROPERTIES OF THE ITERATIVE 4T LONGEST EDGE
REFINEMENT

Next we introduce the Conformity Neighborhood associated with the application of the 4T-LFE

local refinement. This concept will be of help in the study of the propagation properties.

Definition 7 (Conformity Neighborhood V.) Let 7 be a triangular mesh. When refining a
triangle t € T, the Conformity Neighborhood of t, V.(t), is the set of triangles that also need

to be refined due to the conformity process for t.

Definition 8 (M1) Let 7 be a triangular mesh. When refining o triangle t € 7, M1(t) is said
to be the cardinal of Vo(t): M1(t) = |V,(t)|.

Following proposition state the relationship between M1 and LEPP:

Proposition 2. Let T be a triangular mesh. For each t € T, M1(t) is the sum of the lengths
of the LEPP's of the neighbors of t, (excluding triangle t). O

Figure 1 shows that always is possible to construct a mesh in which M1(¢) is as big as we
want. In fact, in a mesh as that in Figure 1, the average of M1 is of linear order in the number
of elements, N: u(M1) = ZA?“) = Zé\;l k= N"’_J;'N = &=L On the other hand, if B(r) =1
as in Figure 3, M1(t) <5Vt e .

Definition 9 (M2) Let 7 be a triangular mesh. For each t € 7, M2(t) is the mazimum length
of the LEPP's of the neighbor triangles of t € 7, (excluding triangle t). O

It should be noted that when refining a triangle ¢ € 7, the conformity process extends at
most by the three edges of ¢t and the propagation defines at most three lists of ordered triangles.
M2(t) is the maximum number of triangles of the three resulted lists. For example, in Figure 3,

M2(t) = 2 because the maximum number of triangles among {ty,t.}, {tc,ta}, {ta} is 2. M2

8
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can be viewed as the radius of V,(t).

Both parameters are relevant in the computational and storage cost of longest edge
refinement algorithms. M1 and M2 are also related to balanced meshes, as the following

proposition establishes:

Proposition 3. Let 7 be a balanced mesh with at least 6 triangles. Then, for each interior
triangle t € 7, M1(t) = 5 and M2(t) = 2. Moreover, M1(t) = 5 <= M2(t) = 2, and if

M1(t) = 5 for all interior triangle t € T, then the submesh of interior triangles of T is balanced.

Proof:

In a balanced mesh all the triangles are terminal. In such a mesh, a given interior triangle ¢
is adjacent to other triangle by their common longest edge, see Figure 4 (a) and each of these
pairs of terminal triangles represents a particular LEPP. Then, if one consider the propagation
of the refinement by the LEPP of a single interior triangle, the sum of the triangles refined in
the propagation is exactly 5 (M1(t) = (2+2+1) = 5), see for example Figure 3. On the other
hand, M2(t) is equal to 2 because, the LEPP exactly contains a pair of terminal triangles. [

Our next goal is to prove that the uniform application of the 4 T-LE partition (also discussed
for local refimement later) will produce a series of meshes with increasing balancing degree
approaching 1. As a consequence, we also shall prove that the mean of M1 and the mean of
M2 tend to 5 and 2 respectively, when the number of refinements applied tends to infinity.
These properties are related with the number of distinct similar triangles that appear when

the 4T-LE partition is uniformly applied.

Proposition 4. [14] (a) The first application of the 4T-LE partition to a given triangle to
introduces two new triangles which are similar to the original triangle ty (moreover, these two
triangles are exterior by their longest edges) and two (potentially) new similar triangles.

(b) The iterative application of the 4T-LE partition to a given triangle to introduces at most

one new distintic (up to similarity) triangle in each iteration. O

Proposition 5. If the 4T-LE partition to an initial triangle to introduces two new similar

9
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triangles t1 sharing their longest edge, then the iterative application of the 4T-LE partition
introduces pairs of terminal triangles excepting the triangles located at the longest edge of
to. Moreover, in this case only two classes of similar triangles are generated, to and ti, see

Figure 5.

Proof:
The situation of the hipothesis is depicted in Figure 5 (a). Considering parallelism we get the
result, see Figure 5 (b). O

Figure 5. 4T-LE partition and generation of terminal triangles

To demonstrate that the 4T-LFE refinement introduces meshes with relatively more terminal
triangles for any arbitrary triangular mesh we consider the distintic types of triangles:
rectangular, acute and obtuse, and separated treatments are considered. We begin in the

next Proposition with the rectangular and acute triangle cases:

Proposition 6. (Rectangular and acute triangle cases) The application of the 4 T-LE partition
to an initial rectangular or acute triangle to produces two new triangles similar to the original
one (located at the longest edge of to) and a pair of terminal triangles. These triangles are
also similar to the original one ty in the case of rectangular tirangle to, and they are similar
to each other but possibly non-similar to the initial one in the case of acute triangle to. See

Figures 6 and 7. O

10
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Figure 7. AT-LE partition. Acute triangle

The obtuse triangle case offers a different situation:

11

Proposition 7. (Obtuse triangle case) The application of the 4T-LE partition to an initial

obtuse triangle to, produces two new triangles similar to the original one (located at the longest

edge of to) and for the other two new generated triangles, t1, it is possible one of the following

cases:

1. To be a pair of similar terminal triangles.

2. To be a pair of similar non terminal triangles.

Figure 8. (a) Obtuse triangle ¢t (b) 4T-LE partition of to

11
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Proof:
Let ay < 1 < 1 be the angles of the initial obtuse triangle ¢ty and let a, b, ¢ be the sides of ¢y
respectively opposite to aj, f1 and ;. For the new non-similar triangles generated, we note
€ the opposite angle to § and o the opposite angle to % Since § < % and € < o the longest
edge of t; is either the new edge CM or % In the first situation (point 1 of the Proposition),
triangles ¢; are a pair of terminal triangles sharing edge C'M as the longest edge. Note that in
this case the longest angle of triangles ¢; are opposite to edge C M and since § + y; = m, then
0 < 3, so triangles ¢; are acute. Besides, the subsequent 47T-LE partition of triangles will not
produce new non-similar triangles (see Proposition 5 and Figure 5).

In the second case, the longest angle of ¢1 is o (see triangles ¢; in Figure 8). The new triangles

t; are not pair of terminal triangles (point 2 of the Proposition). Moreover, the application of

4T-LE partition to triangles ¢; may produce a new pair of non-similar triangles 2. O

In the following we shall call to those triangles pointed out in point 1 of the Proposition
8, Type 1 obtuse triangles and for those pointed out in point 2 of the Proposition 8, Type 2

obtuse triangles.

It should be noted that the 4T-LFE partition always produces two new triangles similar to
the original one (located at the longest edge of ty) and excepting for Type 2 obtuse triangles, a
pair of terminal triangles (similar or non similar to the original one). Moreover, in this scenario,
the non terminal triangles generated by the iterative 4T-LFE partition are those located at the

longest edge of the initial triangle, Proposition 5, see Figures 6 and 7.

The following Proposition states the auto-improvement property of the iterative 4T-LE

partition for obtuse triangles [14]:

Proposition 8. If the 4T-LE partition of an obtuse triangle to introduces a pair of similar
non terminal triangles, (Type 2 obtuse triangles), then the new angles of the new triangle t1

hold:
1.v9a=0
Zr=n-—€esn-

12
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where y; is the longestt angle in the triangle t; and oy the smallest angle in the triangle tg.

O

It is worth noting that in the 4T-LE iterative refinement, Type 2 obtuse triangles are less
obtuse than in the preceding mesh, and after a finite number of /T-LFE partitions this leads
to the case in which the new generated triangles will be no longer obtuse. Hence, when the
generated triangles are non obtuse, it is then applied Proposition 6, (rectangular or acute

triangle cases).

In agreement with the previous analysis, we state the next main results:

Proposition 9. Let 7o be an initial triangular mesh and let T’ = {10, 71,...,Tn} the sequence
of nested meshes obtained by uniform application of 4T-LE partition to the previous mesh.
Then, the balancing degree of the meshes tends to 1 when the number of iterative refinement

grows to infinity, that is:

lim B(r,) =1 (2)

n—oo

Proof:
It is enough to prove the result for the case in which the initial mesh 79 only contains a unique
triangle tg. Then, the number of generated triangles associated to the 4T-LF partition in the

n stage of refinement is:

T, = 4™ (3)

Firstly, we shall prove the proposition for initial rectangular, acute, and the Type 1 obtuse
triangles. In this situation, the number of terminal triangles generated in the n stage of uniform

4T-LE partition, T'T,,, holds the following recurrence relation, (see Proposition 5 and Figure 5):

TT, =4TT,_1 + 2(Tn71 — TTnfl) (4)

with respective initial conditions 7o = 1 and 77T = 0.

13
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Equation (4) can be solved by writing Equations (3) and (4) in matricial form, since the

associated matrix is diagonalizable [11]:

n

2 2 -1 1 2" 0 -1 1 2" 2" 44"
0 4 0 1 0 4 0 1 0 4n
which hold:
TT, TT,
n — AP 0 (5)
T, To

From (5) it is obtained the following solution to Equation (4):

TT, =2"TTy + (4™ — 2™)Tp = 4™ — 2" (6)
Therefore,
: . TT, . 4r—2n
a3 B = e = e =

To complete the proof, we now consider the case of an initial Type 2 obtuse triangle to.
Table I presents the number of distintic types of triangles generated by the 4T-LE iterative
refinement of to. We denote with ¢7 the number of triangles of similarity class ¢; in the stage
n of refinement. For example, after second refinement are generated 4 triangles similar to g,

8 triangles similar to ¢; and 4 new triangles similar to %5.

Table 1. Triangles evolution in the 4T-LE partition

Ref. | 0 2034 n
to |1]2]4a] 8 [16] ¢
t 28 (24|64 0
t 424|096 | 7
ts 8 | 64| 7
t 16 | o
tn tn

From Proposition 7 (2) and Figure 8 we derive Table I, in which the following relation holds:

14
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tr =267, +277] (7)

Equation (7) with initial condition tJ = 1 can be easly expressed in terms of binomial

=2 (Z) 8)

On the other hand, from Proposition 8, the iterative 4 T-LFE partition of any obtuse triangle

coefficients as follows:

to produces a finite sequence of distintic (up to similarity) triangles, t;, 0 < j < k. After that,
there will be no longer distintic new generated triangles from other already generated, (see
proof of Proposition 7). So, the number of terminal triangles T'T,, after the k refinement stage

with n > k hold:

TT, > 2" i (;)

m=k

Hence, we can state that the balancing degree of the generated meshes, B(7,) verifies:

2" Yt () _ 2 ()

1> B(m,) > e =
" 2n Z:ano (m) 2"
Taking limits:
n n n n n
1> lim B(ry) > lim o Zm=k\m) Z’g:k (7;) — i 2k ()
n—o0o n—oo 2N Em:O (m) n—oo n

To calculate this limit we take into account that:

E(Z) -r- % (Z) 22”-(kf1)(k—1)

m=0
Therefore:
. . 2" — (kﬁl) (k - 1)
P2 g Bl 2 i e =
So, lim B(r,) =1. O
n—oo

Corollary 1. The iterative application of the 4T-LE wuniform refinement to an initial
triangular mesh 19 makes the mean of M1 and the mean of M2 tend to 5 and 2 respectively,

when the number of refinements applied grows to infinity.

15
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Proof:
This result is directly derived from Propositions 3, and 9. O

The previous study is mainly concerned with the uniform refinement of meshes. The following
propositions addresses the relationship of the previous study but to the local refinement

problem.

Proposition 10. Let 79 be an initial triangular mesh of bounded domain Q and T' =
{10,71,--.,Tn} be a sequence of locally refined meshes. Let Q; C Q be a sub-region of refinement
in 7, 1 <i<n. Then:

1. p(M1(1,)) =5 and p(M2(r,)) = 2

2. nh—{%o B(r,) = 1.

Proof:
It can be noted that the local refinement is confined to sub-regions Q; of Q2. However, in each of
these sub-regions it is applied uniform refinement and points 1 and 2 of the Proposition hold
when iterative uniform refinement is performed in such sub-regions. Only the Conformity
Neighborhood of triangles in €2; is refined by conformity with other 4T-LE patterns, see
Figure 2 (a-c). Then, the iterative application of the local refinement to the initial mesh 7
produces meshes with increasing balancing degree (increasing number of terminal triangles),
see Proposition 9 and Corollary 1, and then:

1. u(M1(7) = 5 and pu(M2(7)) = 2 and

2. nh—{%o B(r,) =1. O

The iterative application of uniform /T7-LE refinement to an arbitrary triangular mesh
reveals a geometric structure of the edges that appears of the intermediate meshes. It can be

defined as follows:

Definition 10. Let S(7) be the set of non terminal triangles in a triangular mesh 7. A polyline
is a set of connected longest-edges of non terminal triangles in S(7), and the set of of polylines

of T is called the Cantor set of T and represented by C(T).

16
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The interest of C(7) comes from the fact that the location of polylines in S(7) represents
the geometric place where the non terminal triangles are located. Therefore, C(7) could be
usefull for example for applying a post-processing to the generated meshes in which non
terminal triangles could be turned in terminal triangles, or it could be usefull for applying

local refinement by other partitions, as similar partition, simple bisection etc.

Following proposition summarizes some remarkable properties of C(7):

Proposition 11. LetT = {19, 71,...,7a} be a sequence of nested meshes obtained by uniform
AT-LE refinement. Let 1 the fisrt mesh of T' in which there are no new classes of triangles
(up to similarty). Then:

1. The number of edges in the Cantor set C(7;) is exactly the double number of edges in
C(ri1), k+1<i<n.

2. The number of edges in C(1;) is exactly the number of non terminal triangles in 7;. Hence,
the size of C(1;) is of order O(v/N) being N the number of triangles in ;.

3. Excepting the case of Type 2 obtuse triangles, the Cantor sets C(t;), k < i < n, are shape
and length invariant over the respective meshes. We say that C(T) is stable.

4. Excepting the case of Type 2 obtuse triangles, the sets of edges in C(7;) k < i < n are

located at the longest edges of non terminal triangles of mesh 7y. O

4. NUMERICAL EXPERIMENTS

In this section we present numerical evidence showing that the practical behavior of the 4T-LE
partition is in concordance with the reported theory in this work, mainly Propositions 9, 11

and Corollary 1.

4.1. 4T-LE REFINEMENT. TRIANGLE CASES STUDY

Firstly, we treat three triangle cases, rectangular, acute and Type 2 obtuse triangles. To

these initial meshes we apply seven stages of uniform 4T-LE refinement. The goal in this

17



18 J.P. SUAREZ, A. PLAZA AND G.F. CAREY

first experiment is to calculate the number of terminal triangles and compare to the amount of
other triangles in each stage of the refinement. In Table II it is reported the number of terminal
triangles compared to other triangles. For the three cases can be noted as at refinement stage
seven, the number of terminal triangles is clearly larger than the other triangles and this is in
agreement with Proposition 9. Besides, it is presented from Figure 9 to Figure 14 the respective

meshes as they are refined and the respective Cantor sets, C(7) (it is indicated with shaded

color the non terminal triangles in each refined mesh).

Table II. Terminal triangles for the three triangles cases

Refinement Stage

Terminal Triangles

Other triangles

0 (Rectangular triangle) 0 1
1 2 2

2 12 4

3 56 8

4 240 16

5 992 32

6 4032 64

7 16256 128

0 (Acute triangle) 0 1
1 2 2

2 12 4

3 56 8

4 240 16

5 992 32

6 4032 64

7 16256 128

0 (Type 2 obtuse triangle) 0 1
1 0 4

2 2 14

3 26 38

4 162 94

5 802 222

6 3586 510

7 15234 1150
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(2) (b) (c) (d)

()

Figure 9. 4T-LE refinement. Rectangular triangle case

- -

(2) (b) (¢) (d)

S

(e)

Figure 10. Cantor set in rectangular triangle case
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ALL

(a) (b) () (d) (e)

Figure 11. 4T-LE refinement. Acute triangle case

S

(a) (b) () (d) (e)

Figure 12. Cantor set in acute triangle case

(@) (b) (¢) (d)

Figure 13. 4T-LE refinement. Obtuse triangle case
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(a) (b) (c) (d)

Figure 14. Cantor set in obtuse triangle case

4.2. 4T-LE REFINEMENT. ARBITRARY MESHES STUDY

We next consider the examples of two initial meshes and four stages of uniform refinement.
The mesh in Figure 15 (a) is a Delaunay initial mesh of square domain. The mesh in Figure 15
(b) is a bad-shaped arbitrary mesh, named for convenience, pentagonal mesh. It should be
noted that the triangles in the Delaunay mesh are almost regular in terms of the angles and
B(19) = 0.4833. On the other hand, the pentagonal mesh contains all triangles with increasing

largest angles and decreasing smallest angles and B(rp) = 0.

The refined meshes of the initial Delaunay mesh is presented in Figures 18 and 19. From
Figure 19 (a)-(b) it can be distinguished the Cantor set C(7) of Definition 10. Tables III and
IV report the M1 and M2 means. It is observed that both means tend to 5 and 2 respectively,

as the refinement step increases.

In Tables V and VI the balancing degree, terminal triangles and total triangles in each
refinement step are presented. It is observed from the last tables the increasing number of
terminal triangles in the intermediate meshes (covering the area of the meshes), and as a

result, the balancing degree tending to 1. In Figure 4.2 it is given a comparison between the

21
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balancing degrees of the two meshes. Note that in both meshes the balancing degree tends to
1 when the number of refinements increases, even in the pentagonal mesh, which exibits an

initial balancing degree B(7p) = 0.

These results are also applicable to the local refinement scenario as described in Corollary 1.
In order to demontrate evidence of this fact we consider the application of the 4T-LFE local
refinement on a domain corresponding to the Gran Canaria Island. The initial mesh of this
example is a Delaunay mesh and it is considered local refinement on disjoint subregions Si, Sa
and S3 with S = 51 U Sy U S3, for innermost region S3, intermediate region S; and outermost
region S;. Table VII and Figure 23 reveal the same behavior as in uniform refinement, this is,

M1 and M2 tends to 5 and 2 respectively and the balancing degree aproaches to 1.

Table III. Delaunay mesh. M1 and M2

Ref. Step Triangles | M1 Mean | M2 Mean

0 (Initial mesh) 120 5.2333 2.6250
1 480 5.1125 2.3813

2 1920 5.0573 2.1953

3 7680 5.0289 2.0967

4 30720 5.0145 2.0481

5 122896 5.0076 2.0286

Table IV. Pentagonal mesh. M1 and M2

Ref. Step Triangles | M1 Mean | M2 Mean

0 (Initial mesh) 125 26.5440 14.3929
1 500 6.9100 3.8000

2 2000 6.2000 3.0485

3 8000 5.9976 2.8312

4 32000 5.4823 2.4123

5 128000 5.3706 2.2041
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Figure 16. Delaunay mesh. Evolution of M1 and M2.

Table V. Delaunay mesh. Balancing degree

Ref. Step Terminal triangles | Triangles | Balancing degree

0 (Initial mesh) 58 120 0.48333
1 356 480 0.74166

2 1672 1920 0.87083

3 7184 7680 0.93541

4 29728 30720 0.96770

5 121447 122896 0.98821
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Figure 17. Pentagonal mesh. Evolution of M1 and M2

Table VI. Pentagonal mesh. Balancing degree

Ref. Step Terminal triangles | Triangles | Balancing degree

0 (Initial mesh) 0 125 0
1 246 500 0.49200

2 1088 2000 0.54400

3 4778 8000 0.59725

4 21240 32000 0.66375

5 103970 128000 0.81230
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(a) Initial mesh, 120 triangles, 58 terminal triangles (blue

color)

(b) Refinement step 1, 480 triangles, 356 terminal triangles

(blue color)

Figure 18. Global 4T-LE refinement. Delaunay mesh

26



THE PROPAGATION PROBLEM IN LONGEST-EDGE BASED REFINEMENT ALGORITHMS 27

(a) Refinement step 2, 1920 triangles, 1672 terminal triangles

(blue color)

(b) Refinement step 3, 7680 triangles, 7184 terminal triangles

(blue color)

Figure 19. Global 4T-LE refinement. Delaunay mesh
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Delaunay Mesh

Pentagonal mesh

Balancing Degree
o
o

0 | | | | | |
0 2 4 6 8 10 12 14

Triangles x 10*

Figure 22. Balancing degree evolution. Delaunay and Pentagonal mesh

Table VII. Gran Canaria mesh. M1 and M2

Ref. Step Triangles | M1 Mean | M2 Mean

0 (Initial mesh) 592 6.6199 3.4510
1 736 6.6902 3.5394

2 1230 6.5057 3.3837

3 2624 6.0191 2.9184

4 9258 5.5134 2.4265

5 30730 5.2478 2.3672

6 41448 5.2128 2.1891

5. CONCLUSIONS

In this work we have studied the propagation problem in longest edge based refinement
algorithms in 2D. We proved both theoretically and empirically that the propagation of a
single triangle refinement asymptotically extends to a few neighbor adjacent triangles. We

found the limits of the propagation using the Conformity Neighborhood and two parameters
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Table VIII. Gran Canaria mesh. Balancing degree

Ref. Step Terminal triangles | Triangles | Balancing degree
0 (Initial mesh) 248 592 0.41891
1 326 736 0.44293
2 672 1230 0.54634
3 1588 2624 0.60518
4 7020 9258 0.75826
5 26282 30730 0.85525
6 35746 41448 0.86243
7 Gran Canaria Mesh. M1&M2.
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Figure 23. Gran Canaria mesh. Statistics of M1 and M2 evolution.

(M1(t) and M2(t)) which are related to the Longest-Edge Propagation Path (LEPP). When

31

iterative (uniform or local) refinement is applied to an initial arbitrary triangular mesh, we

found that the average of the parameters M1(t) tends to 5 and the average of M2(t) tends to 2.

This guarantees for local refinement that the size of the triangulation is bounded and that the

time cost of the algorithms is of constant complexity (Proposition 9). We also have introduced

the concept of balancing degree (ratio between the terminal and total triangles in a mesh) for

longest edge refinement of meshes and have proved that the Balancing Degree asymtotically
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Figure 24. Local 4T-LE refinement. Gran Canaria mesh

tends to 1. These results are also connected with the improvement of the generated meshes
obtained by the /T-LF iterative refinement. Finally, the polyline and the Cantor set of a
triangulation have been defined and some of their properties have been established. This
concept could be of utility in order to improve the mesh by nodes movement [9], since the
Cantor set points out the region of non terminal triangles and hence the improvement could

turn these triangles to terminal triangles, but this idea requires further research.
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