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1. INTRODUCTION

The numerical simulation of fire in forest has been an important objective in recent researches. The rate of
spread and shape of a forest fire front is affected by many factors. The most important of these are as
follows: fuel type and moisture content, wind velocity and variability, forest topography, fire spread
mechanism, fuel continuity and the amount of spotting (cf[1-2]). The development of Geographic
Information Systems allows the incorporation of these data to the developed models. The first models took
into account constant factors, continuous uniform fuel type, constant wind velocity, moisture and slope.
Under these conditions, a fire ignited at a single point reaches a quasi-steady state and progresses toward the
down wind direction and expands at a constant rate. These data cannot give precise predictions under
variable conditions but are very useful in order to the intuition of the fire controller. Models capable of being
incorporated into the computer simulations of fires under variable conditions have been developed, based on
cellular automata (cf. [3-7]), and stochastic process [8]. These models can give useful indicators as to fire
behavior under such conditions. Combustion phenomena has been extensively studied [9], unsteady flame
propagation has been analyzed [10]. Models based on combustion theories are very difficult to develop
because of the diversity of the fuel type and varied chemical composition within a given fuel type. Because of
the complexity of the problem, models based rigorously on combustion theory have not been completely
developed. In this preliminary work, a first attempt is done to design a computer code for numerical
simulation of forest fire spread in landscapes. Basically a convection-diffusion model for temperature and a
mass-consistent model for wind field simulation will be assumed. A two-steps chemical mechanism is
simplified in order to obtain the heat source. This proposed 2-D model take into account the convection
phenomena due to temperature gradients in vertical direction. A numerical solution of the former model is
presented using a finite difference method together with the study of stability. This numerical method is
contrasted with an adaptive finite element method using refinement/derefinement techniques (cf. [11-14}).

2. MATHEMATICAL MODEL
In this section we present the mathematical model for fire simulation in 2-D. We consider turbulent flow,

then the average value of temperature 7', at a point X in time ¢, is given by the energy equation,

%Tw-6T-V‘7-(K§T)+h(T)(T-];):f(z,T) Q.1
where ¥ express the average value of wind velocity; K = ﬁ is the turbulent diffusivity, with p the air density

AT)
pc

and c its specific heat; #(7T)= is the vertical convection heat transfer coefficient (cf. [15-16]), with

h*(T)=h(T-T, )g being 7. the ambient temperature; f1,T) is the heat source due to combustion. For
equation (2.1) we consider the corresponding initial and boundary conditions.
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In order to define the value of the heat source we assume first a two-steps chemical model. Suppose that
we have a solid fuel A which produces, in an endothermic reaction, a gas fuel B. After this step, the gas fuel
B produces heat in an exothermic reaction. An outline of this two-steps chemical process is the following:

A (solid fuel) + heat — B (gas fuel) — products + heat source

The unitary reactant quantities, C, and C,, for each step are given by the law of mass action and
Arrhenius law, such that

dc m = —

7;:-,1@ ; Ay=de® ; 4=4JT ; C,(0)=C, 2.2)
dac cEp —

TE=ACT MG Ay =Be ™ B=BJT ; Cy(0)=C, 2.3)

where A, and 4, are the reaction rates given by the Arrhenius law, R is the universal gas constant, E and E,
represent the activation energies, A and B are the frequency factors for the first and second reaction step
respectively, that depend weakly on 7. With this two-step chemical model, the heat source term in equation
(2.1) is given by

FLT)=Q0pAsCs" = (0 + QA CT (2.4)

where O, = %c"’ and g, is the unitary heat loss in the endothermic reaction and g, is the unitary heat
production in the exothermic reaction.
This model can be simplified in the following way. Assuming that the activation energy E, is lower than
E,, then A, <<A,, and considering that m=n=1 we have a simplified one-step chemical model:
A — products + heat source

The unitary reactant quantities C, for this step is given by:

-E, _
‘%A_bl‘c‘ s Ag=de® 5 A=AJT ; C,(0)=C, 2.5)

and the heat source is f(t,T)=0QA,C,, where O =f;, is the global heat production in the reaction. This

heat production assume that reaction take place in all the volume of the solid fuel. This is not always true. In
other cases, for example if the combustion take place only on the surface, decay with time can be linear or
parabolic, instead of the former exponential law.

In this preliminary work, the one-step chemical model is assumed, but in a future work the two-steps
model will be considered and endothermic effects corresponding to the first step will be taken into account.

In order to simulate the wind velocity field a mass consistent model will be adopted [13]. This model has
considerable advantages with respect to others, like primitive equations models, due to simplicity of the
method for solving the differential equations governing the flow, and hence short computational time, and
small number of input data. A brief description of the objective of the model is the following:

Let QcR* be a bounded domain with boundary dQ=I;UT;. Suppose that we construct from the
interpolation/extrapolation of experimental data a wind field ¥, defined in all the domain. Then we look for a
vectorial field ¥ that adjusts, in a least square sense, to the field ¥,, verifying the incompressibility condition
and the impermeable boundary I3, that is
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in 02 (2.6)
inh @.7)

where 7 is the vector, unitary and perpendicular to I3. The vectorial field ¥ is the solution of the problem:
"Find ¥ € K that verifies,

J(V)=minJ (L)
ek
(2.8)

where the cost function is
J(R) =3[ (B~ ) P(fi~%)dQ 29)

This problem can be formulated as a saddle-point problem for a Lagrangian. Details about the adaptive
mixed finite element method, developed for the solution of this problem, can be seen in [13]. With this
method we get an exactly divergence-free wind field.

In practice, the following nondimensional version of the presented mathematical model for fire simulation
will be solved

%w Fu— [lﬁu)+ﬁ(u)u=j(r,u) (2.10)
—EA
dN R[T,,+u(T'-T_ )]
N ; = Ae
dr lvol Ml s A= @1

where nondimensional space ¢ and time T have been introduced, such that: ¥ =al, T=|V|t/a, a is a
significant distance of the domain and |\'1'0| is the maximum module of the wind velocity along the domain;
P, =alV,|/K is the Peclet number; B= 7/|%,| is the nondimensional wind velocity field; similarly
u=(T-T, )/( T-T, ), with T as a temperature up to which generalized combustion taken place;

N=C, / CA‘: is the normalized fuel, where C A‘: is chosen as the maximum initial fuel along the domain; the
normalized vertical convection coefficient and the normalized heat source are given by

h(u)= |o| [(T T)u] 2.12)

—EA

flru)= QACA"ZN w1 (2.13)

| o|(

In nondimensional model we will have to introduce the initial conditions for ¥ and N, that is the initial
distribution of the normalized temperature and fuel, and the boundary condition for . We can take as
boundary condition the ambient temperature »=0, if the fire is far from the boundary.
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3. FINITE DIFFERENCE ANALYSIS

In this section we study the problem presented from (2.10) to (2.13) and particularized in 2-D with a wind
field velocity and diffusivity constant along the domain. Therefore, equation (2.10) can be written

32u Bu
+h(uju=f(tu 3.1
Suppose that the numerical values, for all grid points at a general time step, are known;
u}‘j=u(§,~,nj,'t) and Nf"zN(C,-,nj,’c ). Then, In order to obtain the numerical solution of the

normalized temperature in the following time step, T,,, =T, + A7, we use an implicit and upwind finite
difference scheme for energy equation (3.1)

dylufsy +dxlu™), + dp ' + dyu w7y, + dxuafyy _Azf(z,,,u;jj)w;j (3.2)
where
a h 3
Rl )= (T-T. ),
1 el T4
_.E’4
", T HT-T
f(r,,,ulj) ]TI(T-F—)‘QAUCMN [ l]

dp=1-dyl-dxl-dyu-dxu+ At A(u]; )
and according to the direction of the normalized wind velocity field, B =P i+ B 7, we obtain that

If B¢ 20 and B, 2 0

dyl—__éL_ﬁ"AT 1__..AL_P£A_'E ___ A __ 4t
PAY  An’ PAER AL PAY’ PAE?
If B <0 and By 20
4 AT
dyl= A‘Ez_ﬂn T axie Arr dyus - Arz, e A1:2+ﬁ¢
RAn~  4n RAE RAn RAE AL
If B¢ <0 and B, <0
At At At BpAt At PeAt
dyl= ———, dxl=———, =— +20 ) dxu=———o 4+
Y pag T T ha T an PAE " AE
If B¢ 2 0 and f, <0
AT A AT A
dyl=——‘—k—, dxl_____Alz__P_C__, yu=— 172+ﬁn . dxu= 1'2
RAT RAE A RAY A7 RAZ

The matrix of the linear system in each time step is block tridiagonal and it verifies: diagonal terms are
strictly greater than zero, other terms in rows are less or equal than zero and the matrix is strictly diagonally
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dominant. Therefore, this matrix is an M-matrix, then the blockwise Gauss-Seidel method converge and it is
faster than the point-wise method [17].

In order to obtain the numerical solution of the normalized fuel in time step, 7,,; =T, + AT, we use an
implicit Euler method for fuel equation (2.11)

NI,
N = 3 (3)

-E
1+ Ar|~—| e ApecFr 0]

For the analysis of stability of the finite difference model given by (3.2) and (3.3) we take into account
that equations (2.11) and (3.1) have been uncoupled. Stability of the implicit Euler scheme (3.3) is well
known. On the other hand, we can obtain a stability condition for energy equation scheme (3.2) due to a
global Lipschitz condition that the source term (2.13) verify. First, let us consider the following theorem in a
more general case.

THEOREM 3.1. If we have the following general problem:

__2 .(‘JaxJ+b0“”2b 3x,+f(u) inQ,vt20

ij=1 i=1
u=0 indQ, V20
u(x,0)=g(X) inQ

(3.4)

where 4; ;, b; are smooth bounded functions of X, ¢, such that

d d
VEeRY Iy>0/ Ya 62y (6 )

ij=1 i=1

IB>0/ p|sB  (i=l..d)

and function f{u) verify a global Lipschitz condition,
AL>0 / |f(w) - f(w)|S Ljuy~w|  Vu,u, € Range(u)

Then, the finite difference scheme:

d - d
du" = Y, 0y, (al;0, W )+ Bu™ = Y b9, um™ + £ (")
ij=1 i=1
using the following notation
ﬂ,ﬁ-l _ ,0!!

: At

is stable if Az <

1
‘—‘é;i+ﬁL+2
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and we get the following error estimate

(4

o

2 2 n
"< emcH ‘Ie()" +24tY
k=1

d 2
where of =0(At)+20(4xi) is the consistency error in time #; = kAt and C =d—f——+21/5L+ 1.
i=1
Based on this theorem, we can prove the conditional stability of scheme (3.2) because the heat source
term verify a global Lipschitz condition with

1
a — . JR 1 . o(V2-1)

|‘70' AOTAZ\/E—I \/5—1

Let us consider the a problem as a numerical example of the finite difference method proposed in this
section. Suppose a square domain Q = [0,a]x[0,a], with a=6, ﬁ::ﬂn=ﬁ/2, f‘:lOOO, T, =300,

1/ P, =0.005, 0=1583.3, £, =20000, R=197817, p=1, ¢=1000, h =143, 4 =7500. We take the
following initial condition for the normalized temperature

d, if}Z-Zo|<R,
u(l.0)=1d, if|C-C|>R
Bt

- < 2
dy+(d; —dy )¢ Tl if other

where Z’=(O.25,0.25), R =01 R =02, d =15, d,=0, A constant initial fuel distribution N(Z’,O):l

is assumed in all the domain. Finally, we suppose a Dirichlet boundary condition u =0 in 982, V72 0. The
temperature distribution for three time steps can be seen in Fig. 1. The values of the numerical solution can
observed in the grey scale from the maximum value M=1350 °K to the minimum one m=300 °K.

(8) (b) (c)

Fig. 1. Temperature distribution for =0 (a), 7=0.1 (b) and 7=0.2 (c).
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4. ADAPTIVE FINITE ELEMENT METHOD

To contrast results obtained with the former finite difference model, we propose to use an adaptive finite
element method described in [12]. This method combine refinement and derefinement techniques to generate
in each time step a sequence of nested meshes allowing an easy application of multigrid acceleration
techniques. With this method we can adapt the mesh to the numerical solution where more precision is
necessary. We propose to use the finite difference scheme (3.3) for solving the fuel equation in each node of
the mesh and to use finite element method for the energy equation (2.10). The time discretization of this
equation can be an extension of the one presented in [11] and [18] for a linear convection-diffusion problem.
This process can be summarized as follows for the nonlinear problem. Equation (2.10) can be written as

B9 u)+ hwpu=F(ru) @

Let be a fluid element at point B(-_é, 7,). After a time step, this fluid element will be in the position

P( Z Tn+1)- Using the following approximation

du u(c Toer) —4(L,7,) u"“(C) w'(7)
dr AT AT

to do an Euler semi-implicit approximation in (4.1), we obtain

w(E)- st V[ £ 0D+ ach(w () (D)= acf (w (D)) +u' (D) “2)

In equation (4.2) we should have the problem to evaluate the last term in the discrete domain. In order to
solve this problem, we try to write this equation depending only of what happen at the point P at every time.
Then, we can approximate

§=0( T - 81)=(; —ﬁ.-(Z)Ar+—A—;—2—B(Z)- VBi(§)+0(4A7)
and write

=)= a2 AL S (3T 9L+ 4 S5 h Ly DG vora?)
i=1 i=1 i=1 j=1

Finally, if we introduce this last expression in (4.2) we get the following semi-implicit formulation that

approximate the energy equation (2.10), where all terms are evaluated at the same spatial coordinate of P
i -Arfh[-},‘-Vu"*‘] AR )W =+ Atf () - ATV +%T-2-2i“{ﬁ.Vﬂ,.) 3 25,;3, ac,ag,

Now, considering boundary conditions, it is easy to obtain the variational formulation and then apply the
finite element method. A stability and consistency study of this formulation in the linear case can be seen in
[18]. The adaptive strategy is presented also in this reference.

In order to show the efficiency of the adaptive process we consider a similar numerical example, in a
rectangular domain, to the one presented in the previous section. Here we take an uniform wind velocity field
parallel to the longest side of the rectangular domain. The initial temperature distribution is shown in Fig. 2
(a) and a detail of the adaptive mesh corresponding to this initial solution can be observed in Fig. 2 (b). The
adaptive strategy enable us to get a good approximation with a minimum number of nodes. The meshes for
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four following time steps can be seen in Fig. 2 (¢)-(f). It is worth to be noted that the number of nodes in the
meshes are bounded during the unsteady process.

]
P
(a) (b)
|
AN
(©) @
ey X 5y
(e) O]

Fig. 2. Initial temperature distribution (a) and the corresponding mesh (b). Meshes for four following time steps (c)<(f).
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5. CONCLUSIONS AND FUTURE RESEARCHES

A model to simulate forest fire is proposed in order to develop a computer code. Though a simplified
mathematical model is assumed, the principal fire spread mechanisms are taken into account: turbulent
diffusion and convection. The heat loss by convection phenomena in the vertical direction is also taken into
account by means of an estimated convection heat transfer coefficient. Topographic effects of slope affects
the spread of fire, modifying the value of this coefficient. Others effects, like fuel moisture and the type of the
solid fuel, affect the value of the parameters of the model which must be adjusted case by case. A procedure
to investigate ignitions through time and space is also proposed. The results of that computation will be used
to calibrate the model.

For simple case, that is, nearly homogeneous fuel distribution, steady state wind conditions, etc. the finite
difference method presented in this work, including a stability analysis, seems to be very efficient, allowing
numerical fire simulation at low computational cost. On the contrary, when high heterogeneities are present
and we have a solution with singularities or boundary layers the automatic adaptive multigrid technique
mentioned in this work has proved to be useful in order to obtain high quality numerical solutions, but at a
high computational cost.

As future researches we think to implement the two-steps chemical model presented in this work. We also
will treat the 3-D problem using the adaptive finite element method. A previous work about the 3-D mesh
generation can be seen in [19]. We will extend the stability analysis of the linear convection-diffusion
formulation to the nonlinear energy equation attending to the global Lipschitz condition of the source term.
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