Sucesiones y límites de sucesiones

1.- Una sucesión es una lista de números. Se escribirá: $\{a_n\}$.

Ejemplo 1.-
$$\{a_n\} = \{\frac{1}{n}\} = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}.$$

Es sabido que
$$\lim_{n\to\infty}\frac{1}{n}=0$$
. También ocurre que $\lim_{n\to\infty}\sqrt[n]{n}=1$.

- En general, se dice que $\lim_{n\to\infty} a_n = L$, siendo L un número (real o complejo) si los términos de la sucesión $\{a_n\}$ están cada vez más cerca del número L. En ese caso se dice que la sucesion es CONVERGENTE.
- Si, $\lim_{n\to\infty} a_n = \infty$, se dice que la sucesión es DIVERGENTE.
- Si $\lim_{n\to\infty} a_n$ no existe, se dice que la sucesión es OSCILANTE.

Ejemplos:

lim
$$_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$$
. La sucesión $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ es convergente. $\lim_{n\to\infty}\left(2+\frac{1}{n}\right)^n=2^\infty=\infty$. La sucesión $\left\{\left(2+\frac{1}{n}\right)^n\right\}$ es divergente. $\lim_{n\to\infty}\left(-1+\frac{1}{n}\right)^n=(-1)^\infty$ no existe el límite. La sucesión $\left\{\left(-1+\frac{1}{n}\right)^n\right\}$ es oscilante.

Criterio de Stolz: Si $b_n > 0$ y $B_n \to \infty$ entonces

$$\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{b_1+b_2+\cdots+b_n}=\lim_{n\to\infty}\frac{A_n}{B_n}=\lim_{n\to\infty}\frac{A_n-A_{n-1}}{B_n-B_{n-1}}=\lim_{n\to\infty}\frac{a_n}{b_n}\text{ si el último límite existe.}$$

Aplicaciones:

- (C.M.A) Si $a_n \to a$, entonces $\frac{a_1 + a_2 + \dots + a_n}{n} \to a$.
- (C.M.G.) Si $a_n \to a$, entonces $\sqrt[n]{a_1 \cdot a_2 \cdot \ldots \cdot a_n} \to a$, siendo $a, a_n \ge 0$.
- (C.C.R.) Si $\frac{a_n}{a_{n-1}} \to a$, entonces $\sqrt[n]{a_n} \to a$.

Ejemplos: (Preguntas de examen, desde 2004 hasta la fecha)

•
$$\lim_{n \to \infty} \frac{2 + 3\sqrt{2} + \dots + (n+1)\sqrt[n]{n}}{n^2 - n}.$$

• Sea $\{a_n\}$ una sucesión de términos positivos y tal que $\lim_{n\to\infty}a_n=0$. Hallar el límite siguiente:

$$\lim_{n \to \infty} \frac{\frac{\ln(1+a_1)}{a_1} + 2\frac{\ln(1+a_2)}{a_2} + \dots + n\frac{\ln(1+a_n)}{a_n}}{n^2}.$$

• Sea $\{a_n\}$ una sucesión de términos positivos y tal que $\lim_{n\to\infty}a_n=k>0$. Hallar, en función de α $(\alpha>0)$ el límite siguiente:

$$\lim_{n\to\infty}\frac{a_1+2^{\alpha}a_2+\cdots+n^{\alpha}a_n}{n^2}$$

•
$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{\ln n}$$
; $\lim_{n \to \infty} \frac{1 + \frac{1}{3} + \dots + \frac{1}{2n+1}}{\ln n}$.

- $\lim_{n\to\infty} \frac{e^3+e^{3/2}+\cdots+e^{3/n}}{\cos(\pi/4)+\cos(\pi/5)+\cdots+\cos(\pi/(4+n))}$. (Ver solución en la web: Febrero 2006).
- Sea $\{x_n\}$ una sucesión de términos positivos y tal que $\lim_{n\to\infty} x_n = a > 0$. Hallar el límite siguiente:

$$\lim_{n\to\infty}\frac{x_1\sin 1+x_2\sin(1/2)+\cdots+x_n\sin(1/n)}{\ln n}.$$

• Sea
$$f(x) = 3e^{2x}$$
. Hallar $\lim_{n \to \infty} \sqrt[n]{\frac{\left(f^{(n)}(0)\right)^2}{8^n}}$.

•
$$\lim_{n \to \infty} \left(\sqrt[3]{8n^3 + 2n^2} - \sqrt{4n^2 + 1} \right).$$

• $\lim_{\substack{n\to\infty\\2007}} \frac{\frac{2}{1}+\frac{3^2}{2}+\frac{4^3}{3}+\cdots+\frac{(n+1)^n}{n^{n-1}}}{n^2}$. Ver solución en el examen de Febrero de

•
$$\lim_{n \to \infty} \frac{\frac{2}{1} + \frac{3^2}{2} + \frac{4^3}{3} + \dots + \frac{(n+1)^n}{n^{n-1}}}{2 + 3\sqrt{2} + \dots + (n+1)\sqrt[n]{n}}$$

•
$$\lim_{n \to \infty} \frac{2 + 3\sqrt{2} + \dots + (n+1)\sqrt[n]{n}}{n^2 + n - 1}$$
.