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1. Introduction

In the context of finite element methodology, the adaptability of
the mesh and the analysis of the approximation error are important
issues to be addressed [1]. In recent years, many partitions and as-
sociated refinement and coarsening algorithms have been proposed
and studied [2-7]. In the area of adaptive finite element methods,
mesh refinement algorithms that maintain the non-degeneracy of
the elements and the conformity and smoothness of the grid are cer-
tainly desirable. Non-degeneracy means that the minimum angle of
the triangles is bounded away from zero when the partition or re-
finement is applied. Conformity refers to the requirement that the
intersection of non-disjoint triangles is either a common vertex or a
common edge. The smoothness condition states that the transition
between small and large elements should be gradual.

Non-degeneracy, conformity and smoothness are also desirable
properties in adaptive tessellation of NURBS surfaces [8]. In this
sense, Delaunay meshes have been widely used, since they avoid
long, “skinny' triangles and produce the maximum possible smallest-
internal angle of any triangle [9]. Refinement techniques are also
used for enhancement of mesh obtained from trimmed NURBS sur-
faces. See an application of this in [10]. The number of triangles
can be further increased/decreased depending on the application re-
quirements.
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Longest-edge based algorithms have been used with Delaunay
triangulation for the quality triangulation problem [11,12], with de-
tails of the fractal properties of the meshes obtained by these algo-
rithms also given [5,13,14].

Some refinement methods have had exact angle counts since
they first existed [2,3,6,15] and, consequently, the non-degeneracy
of the triangulation is proved. The four-triangle longest-edge (4T-LE)
refinement algorithm proposed by Rivara [16], given that it is based
on the longest-edge bisection, never produces an angle smaller than
half the minimum original angle [16,17], whilst, moreover, revealing
remarkable mesh quality improvement between certain limits, as
recently studied in [18]. However, this mesh quality improvement
depends on the geometry of the initial triangle as will be underlined
herein.

In search of a better mesh quality improvement by iterative par-
tition of the mesh, in this paper, we have introduced a new triangle
partition, the seven-triangle longest-edge (7T-LE) partition. This par-
tition, first, positions two equally spaced points per edge and, then,
the interior of the triangle is divided into seven sub-triangles in a
manner compatible with the subdivision of the edges. Three of the
new sub-triangles are similar to the original, two are similar to the
new triangle also generated by the 4T-LE, and the other two triangles
are, in general, better shaped. We compare the evolution of a stan-
dard quality measurement for the iterative application of the 7T-LE
partition to an initial triangle, first with a Delaunay-type partition,
and then using the 4T-LE partition.

The paper is organized as follows: the 4T-LE partition and the self-
improvement property achieved via its application is summarized
in Section 2. We go on to present the 7T-LE partition in Section 3,
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with some of its proven properties. Section 3 ends by comparing
different strategies for partitioning a single triangle by combining
longest-edge based partitions with self-similar partitions. Numerical
experiments are provided in Section 4 proving that the new 7T-LE
partition is comparatively better than the 4T-LE partition, and is also
advantageous in many scenarios with respect to a 7-triangle local
Delaunay-based partition.

2. Longest-edge triangular partitions

Here the 4T-LE partition and its self-improvement is summarized.
The section closes with an example illustrating the limits of the
characteristics of improvement.

In the following, for any triangle t, the edges and angles will be,
respectively, denoted in decreasing order r{ >ry >r3 and y > f>o.
Furthermore, t(o, f3, 7) will be the class of similar triangles with an-
gles y> > o. Interchangeably, t will represent an element of the
class t € t(a, 5, 7) or the class itself.

Definition 1. The longest-edge (LE) partition of a triangle t is ob-
tained by joining the midpoint of the longest edge of ty with the
opposite vertex (Fig. 1(a)). The 4-triangle longest-edge (4T-LE) par-
tition is obtained by joining the midpoint of the longest edge to the
opposite vertex and to the midpoints of the two remaining edges
(see Fig. 1(b)).

It should be noted here that in order to ensure the conformity over
the mesh when local refinement based on the 4T-LE partition is used,
two additional three-triangle (3T) partitions are applied along with
the longest-edge (LE) partition [16]. The 3T partition of a triangle ¢
is obtained by performing, first, the LE partition of t, and then, one
of the two sub-triangles generated is further bisected by joining the
midpoint of the longest-edge of t with the midpoint of the opposite
edge. Fig. 2 shows these 3T partitions. The 3T partition of a triangle
t in which the second longest-edge of t is also subdivided will be
denoted here 3T-LE.

Since the first 4T-LE partition of any triangle t; introduces two
new edges parallel to the edges of tp, the same first 4T-LE partition
of a single triangle ty produces two triangles similar to tg, and two
(potentially) new similar triangles t;; and, consequently, the itera-
tive 4T-LE partition of any triangle t; introduces (at most) one new
dissimilar triangle per iteration [19]. See Fig. 3, in which two differ-
ent situations for the 4T-LE partition are presented. On the left of
the figure, the 4T-LE partition of triangle t; produces a new triangle
t5. On the right, however, the generation of new triangles stops at
the second stage of refinement.

The iterative 4T-LE partition produces a finite sequence of “bet-
ter' triangles satisfying the properties illustrated in the following di-
agram until triangle ty becomes non-obtuse [19]:

to — t — ty - ... N
(obtuse) (obtuse) (obtuse) (non-obtuse)

o4} o1 >0 0y >0l oN > UN_1

70 N<Vo—%  2Sy1 - % INSYN-1 —ON

Diagram 1. (From [19])

where «; and y; are, respectively, the smallest and the largest angles
of triangle t;. The arrow emanating from triangle ¢; to triangle t;, ¢
means that the (first) 4T-LE partition of triangle t; produces the new
dissimilar triangle t;, .

2.1. Mesh quality improvement for the 4T-LE partition

We refer the reader to [18] in which the self-improvement
property of the 4T-LE partition has been studied in detail. The
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Fig. 1. (a) LE partition of triangle ty, (b) 4T-LE partition of triangle tg.
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Fig. 2. Three-triangle partitions of triangle t; used in local refinement for assuring
conformity. 3T-LE of ¢, at the right.

Fig. 3. Two different situations. On the right, the generation of new triangles stops
at the second stage of refinement.
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Fig. 4. Evolution of minimum and maximum angles of the new dissimilar triangles
generated by the 4T-LE partition, one at a time.

bounds of the minimum and second largest angles, when the 4T-LE
partition is applied to an initial (obtuse) triangle, are detailed in
[18]. By way of example, consider the initial triangle t; with angles
(o, B, ) = (1.95,32.595, 145.455). The evolution of the smallest an-
gle and largest angle for each of the new triangles generated by the
4T-LE partition is shown in Fig. 4. Therefore, the self-improvement
property of the 4T-LE partition, as proven both experimentally and
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Fig. 5. The 7T-LE partition of triangle ty = AABC.
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Fig. 6. Two different 7T partitions of an obtuse triangle tq. (a) 7T-LE partition of tg.
(b) 7T-D partition of tg.
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Fig. 7. The 7T-LE partition and 3T-LE partition of an obtuse triangle ty = AABC.

Fig. 8. Two different ways of obtaining new triangles t,;, from triangle ty. (b) By
doubling the shortest edge of tg. (c) By LE bisection of ty. t,; is the sub-triangle
with acute angle at M.

mathematically in [18], needs to be handled with caution, as the
example clearly demonstrates.

Given that the 4T-LE partition is based on the bisection of the
edges, by locating midpoints on the edges of the triangle, we have
introduced here a new triangular partition based on the trisection of

c,l c

S
[
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Fig. 9. (a) |AB| <|BC'| < |AC'| and (b) ¢ < ¢.

the edges at equally spaced points. Our goal is to study the evolution
of the shape of the triangles when this partition is iteratively applied,
and to compare it with the behaviour given with the 4T-LE.

3. The 7T-LE partition

In this section, a new longest-edge partition is presented. This
partition is based on the trisection of the edges of the triangle, instead
of the bisection of the edges as the 4T-LE.

Definition 2. The 7-triangle longest-edge (7T-LE) partition of a tri-
angle ty is obtained as follows:

1. Position two equally spaced points per edge and join them, using
parallel segments, to the edges, at the points closest to each vertex
(see Fig. 5(a)).

2. Join the two interior points of the longest edge of the initial trian-
gle to the base points of the opposite sub-triangle in such a way
that they do not intersect (see Fig. 5(b)).

3. Triangulate the interior quadrangle by the shortest diagonal (see
Fig. 5(c)).

It should be noted that, due to parallelism, the first three sub-
triangles obtained are similar to the initial one (ty), whereas the
second two sub-triangles are similar to the first-class Rivara triangle
(t7)- In general, triangle t; is better shaped than triangle ty. This
improvement has already been studied in [18] to which the reader
is referred. Finally, the last two triangles are not given with the 4T-
LE Rivara partition and, consequently, will be called here, t,;. Note
also that the area of sub-triangles ty and ¢y is % of the area of the

initial triangle, whereas the area of each sub-triangle ;1 is % of the
area of the initial triangle.

Basing our hypotheses on the trisection of the edges, some other
partitions may be considered. We present here one of these possi-
bilities, also based on a local Delaunay triangulation:

Definition 3. The 7-triangle Delaunay (7T-D) partition of a triangle
to is obtained as follows:

1. Position two equally spaced points per edge.
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a

Fig. 10. Sequence of dissimilar t,; triangles generated by the 7T-LE partition: (a) by doubling the shortest edge, (b) triangle AABD = t;; is the first one with edge AD not
been the shortest edge. (c)-(e) show the following non-similar triangles g, ¢ and t,, for the case in which BD is the longest edge of triangle AABD = t.

2. Triangulate the cloud of points using the Delaunay triangulation
(see Fig. 6(b)).

It should be noted that the 7T-D partition is not equivalent to the
7T-LE partition since the division of the interior hexagon depends
upon the specific distribution of the distances between the vertices.
See Fig. 6.

3.1. Mesh quality improvement for the 7T-LE partition

Before studying in detail the self-improvement property of the
7T-LE partition, note that the new triangle t,,; generated by the 7T-
LE partition may also be seen as one of the triangles generated by the
3T-LE partition division, used in the local refinement associated with
the 4T-LE partition. See Fig. 7 in which triangle ¢y, with vertices A, B,
and C, is divided by the 7T-LE, and the extreme points of the diagonal
of the interior quadrilateral are denoted by M, and N. Notice that, by
parallelism, triangle AMN is similar to triangle ABC, and, therefore, the
7T-LE partition of triangle t; induces the 3T-LE partition of triangle
AMN.

Lemma 4. The number of dissimilar triangles arising in the iterative
application of the 7T-LE partition to any initial triangle ty = AABC is
bounded.

Proof. The 7T-LE partition of a triangle produces two new dissimilar
classes of triangles per iteration. One of them is similar to the new

(0,0) (0.5,0) (1,0)
Fig. 11. 3T-LE partition of a random triangle.
triangle generated by the 4T-LE partition. This triangle is noted by

t; in Fig. 7(a). The other new dissimilar triangle is denoted by t;;
in Fig. 7(a). Notice that triangles t; and t,;; appear also as a result



752 A. Mdrquez et al. / Finite Elements in Analysis and Design 44 (2008) 748 - 758

(-0.5,0) (0,0) (0.5,0)

Fig. 12. The smallest angle of t,, is y, in region I, o in region II and f, in region III.

(-0.5,0) (0,0)

Fig. 13. Regions Rg and Ry.

of the 3T-LE partition of the initial triangle, see Fig. 7(b). Since the
number of dissimilar triangles arising in the iterative application of
the 4T-LE partition to any triangle ¢y is bounded [18,19], it is enough,
here, to prove that the number of dissimilar triangles different from
those generated by the 4T-LE partition, is also bounded.

Let us presume that the edges of t; = AABC verify that
|BC| < JAC| < |AB|. The way to obtain a triangle similar to t,1, is to dou-
ble the shortest edge BC and then join the new vertex C’ (note that
in this situation C’ = B+ 2BC) to vertex A (see Fig. 8(b)): or the other
equivalent, by carrying out an LE bisection of the original triangle
and taking the acute sub-triangle generated (see Fig. 8(c)). These two
possibilities will be taken into account in the discussion hereinafter.

Therefore, in order to obtain the different triangles t,; generated
by iterative application of the 7T-LE partition, we double the shortest
edge BC successively, whenever the baseline AB is not the shortest
edge of the triangle, until the last doubled edge becomes the longest

AN
VAL VAN,

Fig. 14. Self-similar partitions depending on the number of points per edge. (a) one
point per edge. (b) Two points per edge.

4T-SS/9T-SS

(-0.5,0) (0,0

Fig. 15. Best partition for a triangle.

one of the new triangle generated. Supposing that the last doubled
edge is BC, the new edge BC is not the longest one, but AB, however,
is the shortest one, that is |AB| < |BC'| < |AC|, (see Fig. 9(a)).

Then, we double the edge AB and now, we can see how, in
Fig. 9(b), AC is the shortest edge. Therefore, if AB’ is the longest edge,
the last doubled edge becomes the longest one of the new triangle.

If not, we can see that angle ¢ =B’AC’ < go:A/B\C, that is, the new an-
gle defined by the last doubled edge and the shortest one, is smaller
than in the previous situation so, at some point, this process must
end and the last doubled edge becomes the longest one.

Let us suppose, then, that, in our initial triangle AABC = t,
|BC| < |AC| < |AB| and when we double BC, and new point D =B+ 2BC
is generated, in triangle AABD = t)» edge BD is the longest one, (see
Figs. 10(a) and (b)). There are now two possibilities:

(1) If |AD| > |AB|, then the next new triangle produced by the 7T-LE
partition, resulting from the LE bisection of triangle ¢y, is triangle
to = AABC which has been previously considered, and there the
process ends.

(2) In the other case, i.e. if |AD| < |AB| < |BD|, then the next new tri-
angle produced by the 7T-LE partition, resulting from the LE bi-
section of triangle ¢t;), is triangle t;;) = AACD. (See Fig. 10(c)).
In this triangle, |CD| = |BC| < |AC|, so there are three cases to
study:

(a) First, if we presume that |CD| < |AC| < |AD|, then we double
edge CD and we obtain triangle t; again.

(b) Let us now presume that |CD| < |AD| < |AC|. Then we divide
the longest edge AC and triangle ¢ ;;, = ACDE is obtained. See
Fig. 10(d). It is easy to see that the shortest-edge of this new
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Table 1
Sequences of dissimilar triangles obtained by the 4T-LE and 7T-LE partitions

It. n 4T-LE triangles no. of dissimilar triangles 15 7T-LE triangles no. of dissimilar triangles 7
Tn ﬁn On Tn ﬁn Oln

Test 1: Initial triangle to = (145.455, 32.595, 1.950)
0 145.455 32.595 1.950 145.455 32.595 1.950
1 143.292 34.545 2.164 143.291 32.595 4114
2 140.885 36.708 2.407 138.198 32.595 9.206
3 138.200 39.115 2.684 123.933 32.595 23.472
4 135.202 41.800 2.998 77.683 69.721 32.595
5 131.850 44.798 3.351 69.721 59.152 51.125
6 128.107 48.150 3.743 84.036 59.152 36.810
7 123.937 51.893 4.170 69.721 59.152 51.125
8 119.316 56.063 4.621
9 114.235 60.684 5.081

10 108.715 65.765 5.520

11 102.811 71.285 5.904

12 96.618 77.189 6.193

13 90.266 83.382 6.352

14 89.734 83.907 6.359

15 90.266 83.382 6.352

It. n 4T-LE Triangles no. of dissimilar triangles 11 7T-LE Triangles no. of dissimilar triangles 8

Tn ﬁn On Tn ﬁn Oln

Test 2: Initial triangle ty = (173.972,5.423, 0.605)
0 173.972 5.423 0.605 173.972 5.423 0.605
1 173.216 6.028 0.756 173.215 5.423 1.361
2 172.245 6.784 0.971 170.949 5.423 3.627
3 170.952 7.755 1.293 153.689 20.887 5.4230
4 169.148 9.048 1.804 144.928 20.887 14.183
5 166.462 10.852 2.686 102.858 56.254 20.887
6 162.066 13.538 4.396 78.056 56.254 45.689
7 153.735 17.934 8.331 81.241 56.254 42.504
8 133.923 26.265 19.812 78.056 56.254 45.689
9 84.274 49.648 46.077

10 95.726 43.599 40.676

11 84.274 49.648 46.077

Test problem 1 and test problem 2.

triangle is CE, so we double it, and we obtain triangle ¢;
again.

(c) Finally, we must consider |AD| < |CD| < |AC|. As in the previous
case, we divide AC but, now, we obtain triangle ¢ ;,, = AADE.
(See Fig. 10(d).) In this triangle, AE is the shortest-edge, so
we double it and we obtain triangle ¢.;, again. [

3.2. Comparison of the 4T-LE and 7T-LE partition for a random triangle

A geometric diagram is constructed as follows [20]: (1) for a
given triangle or sub-triangle, the longest edge is scaled to have unit
length. This forms the base of the diagram. (2) It follows that the set
of all triangles is bounded by this horizontal segment (longest edge),
defined by the points (0, 0), (1,0), and by two bounding exterior
circular arcs of unit-radius, centered, respectively, at (1,0) and at
(0, 0), as shown in Fig. 11.

Note also that, by reflection around the vertical line x = % it is
enough to consider the left half of the diagram, which is equivalent to
positioning the smallest angle at point (1, 0) and the second largest
angle at point (0, 0).

Our measurement of triangle quality, in this section, will be the
smallest angle. For each random apex into the geometric diagram,
we compare og, the smallest angle of the Rivara triangle with oy, the
smallest angle of the new triangle obtained in the 7T-LE partition.
In this situation, there are regions where either oy or oy is better.
These regions will be denoted, respectively, by Rg and Ry.

First of all we must study which of the angles in triangle tn, is
the smallest. By applying the Law of Sines, we can see that

2 o (1)? 1
ay =0y if a°+b” < 3 anda<‘—1,

oy =fo if a—1>2-i-b2 L 2anda 1and
N=P2 2 =2 "3

. - 1\?

oy =7y, in the rest of cases, that is, if a? +b* > (§>
1\2 5 [1\?
and(af§> +b >(§> .

These three possibilities correspond respectively to regions II, IIl and
I in Fig. 12.

Now, we compare o with o, f7 and y;. In region I we obtain
that o is always smaller than 75, so oy > og. In region Il we obtain
that y; is always smaller than a; so oy > ap too. Finally, in region III,
we find that f3, is always smaller than ff; and y; and is smaller than
o1 when (a—1)2+b?% < % so, only in this case, oy < ag. In Fig. 13, we
can see that regions Ry and Ry are separated by the circumference
centered at (1, 0) and with radius 1/+/2.

So if we compare the area covered by both regions, we obtain that
the 7T-LE partition is better than the 4T-LE partition in 89% of the
cases (more precisely, the areas of both regions are A(Rg) =0.07135
and A(Ry) = 0.6486).

Finally, notice that similar partitions of acute triangles are better
than longest-edge partitions. Fig. 14 shows similar partitions of an
acute triangle, depending on the number of the points per edge.

In Fig. 15, we can see the rules which allow us to decide which
of the various partitions to use. If (@ — 1)2 + b2 < % we choose 4T-LE

partition. If (a—1)2 + b2 > 1 and (@ )% +b? < (})2, we choose 7T-
LE partition: and if (a — %)2 +h%> (%)2, we choose the self-similar
partition.
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Table 2
Sequences of dissimilar triangles obtained by the 4T-LE and 7T-LE partitions

It. n 4T-LE triangles—no. of dissimilar triangles 8 7T-LE triangles—no. of dissimilar triangles 7

In ﬁn On Tn ﬁn On
Test 3: Initial triangle to = (169.900, 8.572, 1.527)
0 169.900 8.572 1.527 169.900 8.572 1.527
1 167.721 10.100 2.180 167.719 8.572 3.708
2 164.371 12.279 3.349 158.613 12.814 8.572
3 158.625 15.629 5.747 125.395 41.790 12.814
4 146.921 21.375 11.704 106.818 41.790 31.391
5 117.268 33.079 29.652 75.424 62.784 41.790
6 63.237 62.732 54.031 73.181 62.784 44033
7 116.763 33.270 29.967 75.424 62.784 41.790
8 63.237 62.732 54.031
It.n 4T-LE triangles—no. of dissimilar triangles 4 7T-LE triangles—no. of dissimilar triangles 4

Tn ﬁn On n ﬁn On
Test 4: Initial triangle to = (114.624, 54.900, 10.475)
0 114.624 54.900 10.475 114.624 54.900 10.475
1 102.073 65.376 12.551 102.074 54.900 23.254
2 88.250 77.927 13.824 74.624 54.900 50.475
3 91.750 74.623 13.627 86.500 54.900 38.598
4 88.250 77.927 13.824 74.624 54.900 50.475
5
6

Test problem 3 and test problem 4.

It should be noted that for a complete specification of local re-
finement based on the 7T-LE partition, there is a need to define how
to achieve the conformity of the mesh. This will be tackled in a forth-
coming paper [21].

4. Numerical examples

In this section, we present two different experiments. First, some
test triangles also studied by Rivara and Iribarren in [19] and Plaza
et al. in [18], were chosen to compare the evolution of the triangles
generated by the 4T-LE partition with the new triangles generated
by the 7T-LE partition. Second, we draw a comparison between the
7T-LE partition and the 7T-Delaunay partition.

4.1. The 7T-LE versus 4T-LE for mesh quality improvement

Although we have already underlined the different behaviour
with respect to mesh quality improvement given by the 7T-LE par-
tition and the 4T-LE partition, here we present some numerical ex-
amples for different initial triangles . Tables 1 and 2 show four
test problems in which the sequence of dissimilar triangles are ob-
tained by the 4T-LE and by the 7T-LE partition. Note that the new
triangles generated by the 7T-LE partition are better shaped than the
corresponding triangles generated by the 4T-LE partition. However,
in test problems 2 and 3, the last (acute) triangles generated by the
4T-LE partition are better (in terms of the minimum angle) than the
last new triangles generated by the 7T-LE. For a visual comparison
of the evolution of the triangles, see Fig. 18.

In order to visually compare the better improvement achieved by
means of the 7T-LE partition, see Fig. 16, in which, and for example
test 1, the evolution of the smallest and largest angles for each of
the new triangles generated by the 7T-LE partition is shown. The
initial triangle is ty = (o, B, y) = (1.95, 32.595, 145.455) as in Rivara
and Iribarren [19]. Compare the evolution of these angles with the
evolution of the triangles generated by the 4T-LE partition given in
Fig. 4 at page 7.

For a better understanding of the self-improvement property
of the 4T-LE partition, and the limits of this property as given in
this paper, the successive triangles obtained have been normalized

7T MIN/MAX ANGLE EVOLUTIONS

150
20 \\
L 90
-
2 \\/\/\/ \/\/\
zZ k
<
60
NAANANAN
30
0
0 5 10 15

REFINEMENT ITERATION

Fig. 16. Evolution of minimum and maximum angles of the new triangles generated
by the 7T-LE partition, one at a time, for example test 1: ty=(145.455, 32.595, 1.950).

to share the longest edge. Fig. 17 shows the triangles obtained
by the 4T-LE and by the 7T-LE partition in the first test problem.
Since all the triangles have been represented with longest edge on
vertices (0,0) and (0, 1), the evolution of the new triangles gen-
erated by the 7T-LE partition vs. the triangles generated by the
4T-LE partition can be observed, at a glance, from the diagrams in
Fig. 18, where the third vertices are joined by lines, from bottom
to top.

It should be noted that, in the case of the last triangles generated
by the 7T-LE partition in these tests, it would seem that the largest of
the smallest angles generated does not depend upon the geometry
of the initial triangle considered. This contrasts sharply with the
situation for the 4T-LE partition, in which these angles improve, but
within certain limits, depending upon the values of the angles of the
initial triangle.
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Fig. 17. Evolution of dissimilar triangles of example test 1.
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Fig. 18. Evolution of the triangles given by the 4T-LE partition (solid line) vs. 7T-LE partition (dashed line). (a) Example test 1. (b) Example test 2. (c¢) Example test 3. (d)

Example test 4.

In order to experimentally check this conjecture, we carried
out the following computational experiment. Select a point (x,y)
within the mapping domain comprised the horizontal segment of
extreme points (0,0) and (1,0), and the unit circular arcs which
centre at these extreme points. Point (x,y) defines the apex of a
target triangle with additional vertices at (0, 0) and (1, 0). For this
triangle, 7T-LE division is successively applied as long as a new

dissimilar t,; triangle appears. This means that we recursively ap-
ply 7T-LE and stop when the shapes of new generated triangles are
the same as those already generated in previous refinement step.
The number of such refinements to reach termination defines the
number of dissimilar triangles associated with the initial triangle,
and this numerical value is assigned to the initial point (x, y) chosen.
This process is progressively applied to a large sample of triangles
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Fig. 20. Two different initial triangulations. (a) Good quality mesh. (b) Bad quality
mesh.
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(points) uniformly distributed over the domain. Finally, we graph
the respective values of dissimilar triangles in a corresponding
colour map to obtain the result in Fig. 19(a). The same experiment
for the 4T-LE partition is shown in Fig. 19(b).

It should be noted that the dark blue region in Fig. 19 corresponds
to the region in which all the trajectories end, with total indepen-
dence of the initial position. Therefore, for the 7T-LE partition, a
lower bound for the maximum of the smallest angles for triangles
tq1 is «=30° corresponding to the apex with x= %, or the apex with

x = 3. Note also that the smallest angle in each of the regions gen-
erated in this way, is bounded from below with total independence
of the initial point of the respective trajectories. This is a remark-
able feature in comparison with the evolution of the angles for the
4T-LE partition. In the 4T-LE partition, these lower bounds depend
on the geometry of the initial triangle. See [18] for details on the
evolution of the angles when the 4T-LE partition is recursively ap-
plied. Also observe the evolution of the minimum angles in Tables 1
and 2.

4.2. A comparative study of two seven-triangle partitions

Here we show a numerical comparison of the seven-triangle par-
titions previously presented. Namely, we apply these partitions to an
initial (good quality) Delaunay mesh, and to a (poor quality) initial
pentagonal mesh. See Fig. 20.

For a comparison of the quality measurement evolution when
each partition is globally applied, the mean value of the quality mea-
surement 7 has been calculated. Bearing in mind that for each tri-
angle t, the quality measurement # is defined by
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Fig. 21. Evolution of mesh quality. (a) Good quality mesh. (b) Bad quality mesh.

where A is the area of ¢, and [, I, and I3 the lengths of the sides
of the triangle. If #(t) > 0.6, triangle t is acceptable quality-wise. For

the equilateral triangle =1 where l; =1, =Il3 =/ MT\E see [4]. It
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Fig. 22. Distribution of triangles (percentages) for different triangle partitions from a poor quality mesh. (a) 7T-LE partition. (b) 7T-Delaunay partition. (c) 4T-LE partition.

should also be noted that other quality measurements may be used
for this purpose, but they give similar patterns [22,23].

Fig. 21 shows the evolution of the average of #(t) for the trian-
gles t, at each mesh level, when the three reference partitions, 4T-
LE, 7T-LE and 7T-Delaunay, are repeatedly applied to every triangle,
and successive generations, for the two different initial meshes con-
sidered here. Note that the 7T-LE partition is equivalent to the 7T-
Delaunay in the case of an initially good-quality mesh, whereas the
evolution is a little worse than that of the 7T-Delaunay when the
initial mesh is relatively poor quality. However, in both cases, the
quality evolution demonstrated by the 7T-LE partition is much bet-
ter than that given with the 4T-LE partition. The clear advantage of
the 7T-LE partition in comparison with the 4T-LE partition is more
evident if the percentage of area covered by different classes of tri-
angles is considered. To this end, we have classified the triangles as
follows:

e Class A: triangles with 0.6 <y < 1.
e Class B: triangles with 0.3 <7 <0.6.
e Class C: triangles with 0 <7 <0.3.

The evolution of the corresponding percentage of area covered by
these three classes of triangles, in the case of an initial bad qual-
ity mesh (pentagonal mesh) is given in Fig. 22. For this initial bad
quality mesh, the results given are really spectacular, since the per-
centage of bad elements decreases monotonously when the refine-
ment level increases. In addition, the 7T-LE partition behaves simi-
larly to the 7T-Delaunay partition, and much better than the 4T-LE
partition.

But the 7T-LE not only shows better behaviour considering the
average of the quality measurement, but also when the distribu-
tion of the quality of the measurement values is considered. This is

underlined in Fig. 22 for the finest mesh obtained from an initial
bad quality mesh, respectively, by the 7T-LE partition and the 4T-LE
partition.

It should be pointed out here that, from a computational point of
view, the 7T-LE partition is cheaper than the 7T-Delaunay partition
since the 7T-LE partition is linear to the number of points O(N), while
the 7T-LE is O(N Ig N) [10], and, hence, it will be advantageous in
many scenarios.

5. Conclusions

In this paper, the seven-triangle longest-edge (7T-LE) partition
has been presented and studied. It has been proved that the iterative
application of the 7T-LE partition to any initial triangle generates a
finite number of dissimilar triangles. The so-called self-improvement
property of this partition has been studied and compared with the
same property of the four-triangle longest-edge partition of Rivara.
The triangles generated by iterative application of the 7T-LE partition
tend to be improved throughout the process, in the sense that the
percentage of area covered by bad elements tends to decrease, while
the percentage of good elements tends to increase when the number
of global refinements increases, which is especially true in the case
of bad initial triangles. It should also be highlighted that a lower
bound for the maximum of the smallest angles of the new triangles
t,1 generated by the 7T-LE partition is « = 30°, and this bound is
independent of the geometry of the initial triangle.
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