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Combinatorial proofs of Honsberger-type identities
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In this article, we consider some generalizations of Fibonacci numbers. We
consider k-Fibonacci numbers (that follow the recurrence rule
Fk,nþ2 ¼ kFk,nþ1 þ Fk,n), the ðk, ‘Þ-Fibonacci numbers (that follow the recurrence
rule Fk,nþ2 ¼ kFk,nþ1 þ ‘Fk,n), and the Fibonacci p-step numbers
(FpðnÞ ¼ Fpðn� 1Þ þ Fpðn� 2Þ þ � � � þ Fpðn� pÞ, with n4pþ 1, and p42). Then
we provide combinatorial interpretations of these numbers as square and domino
tilings of n-boards, and by easy combinatorial arguments Honsberger identities
for these Fibonacci-like numbers are given. While it is a straightforward task to
prove these identities with induction, and also by arithmetical manipulations such
as rearrangements, the approach used here is quite simple to follow and
eventually reduces the proof to a counting problem.

Keywords: generalized Fibonacci numbers; combinatorial proof; Honsberger
identities

1. Introduction

One of the simplest and more studied integer sequences is the Fibonacci sequence [1–4]:
fFng

1
n¼0 ¼ f0, 1, 1, 2, 3, 5, . . .g wherein each term is the sum of the two preceding terms,

beginning with the values F0¼ 0, and F1¼ 1. Fibonacci numbers arise in the solution of
many combinatorial problems. They count the number of binary sequences with no
consecutive zeros, the number of sequences of 1’s and 2’s which sum to a given number,
the number of independent sets of a path graph, etc. These interpretations have been used
to provide combinatorial proofs of many interesting Fibonacci, and also Lucas and
binomial identities [5–8].

Fibonacci numbers have been generalized in many ways. Here we use the k-Fibonacci
numbers as studied in [9,10], which depend only on one integer variable k. For any integer
number k� 1, the k-Fibonacci sequence, say fFk,ngn2N is defined recurrently by:
Fk,0 ¼ 0,Fk,1 ¼ 1 and Fk,nþ1 ¼ kFk,n þ Fk,n�1 for n� 1. Particular cases of k-Fibonacci
numbers are:

. If k¼ 1, the classical Fibonacci sequence is obtained: Fnf gn2N¼
0, 1, 1, 2, 3, 5, 8, . . .f g.

. If k¼ 2, the Pell sequence appears: Pnf gn2N¼ 0, 1, 2, 5, 12, 29, 70, . . .f g.

. If k¼ 3, the following sequence appears: F3,nf gn2N¼ 0, 1, 3, 10, 33, 109, . . .f g.
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It is worthy to be noted that only the first 11 k-Fibonacci sequences are listed in
The On-Line Encyclopedia of Integer Sequences [11], from now on OEIS, with the numbers
given in Table 1.

k-Fibonacci numbers satisfy numerous relationships, as the classical Fibonacci
numbers. Many of these identities for the classical Fibonacci numbers are documented
in [4], where they are proved by algebraic means. Some of these formulas are combina-
torially proved in [6,7].

Fibonacci numbers may also be generalized considering the 2-parameter recurrence
relation: Gnþ1 ¼ kGn þ ‘Gn�1 for n� 1, with initial conditions G0¼ 0, G1¼ 1. We use letter
G for these numbers that will be called here ðk, ‘Þ-Fibonacci numbers. Table 2 shows some
examples of these sequences as listed in OEIS.

Finally, here we will also consider the Fibonacci p-step numbers also known as higher-
order Fibonacci numbers [12]. Feinberg extended the summation property
Fn ¼ Fn�1 þ Fn�2 of the Fibonacci sequence to Fn ¼ Fn�1 þ Fn�2 þ Fn�3 [13]. The new
numbers were named tribonacci numbers, because now addition of three successive
members in the sequence give the next member. In general, the Fibonacci p-step numbers
are defined by the recurrence relation FpðnÞ ¼ Fpðn� 1Þ þ Fpðn� 2Þ þ � � � þ Fpðn� pÞ, with
n � p, and p42. Extending also the initial conditions from the classical Fibonacci, for
the Fibonacci p-step numbers are: FpðnÞ ¼ 0, if 0 � n � p� 2, Fpðp� 1Þ ¼ 1. With these
initial conditions, as it can be easily checked, the first non-null numbers in the sequence are
1, 1, 2, 4, . . . , 2p�1. Therefore, and also in order to use a combinatorial
interpretation of these numbers we will employ here the following initial conditions for
the Fibonacci p-step numbers: Fpð0Þ ¼ 0, Fpð1Þ ¼ 1,FpðnÞ ¼ 2n�2, for 2 � n � p� 1
[13,14]. Some of the first Fibonacci p-step numbers along with their references in OEIS
are shown in Table 3.

Our goal is to provide Honsberger-type identities [2] for the Fibonacci,
k-Fibonacci and ðk, ‘Þ-Fibonacci numbers by combinatorial means. We show that in
the context of ‘colour-square tilings’, these identities follow naturally as the tilings are
counted.

Table 1. The first 12 k-Fibonacci sequences listed in [11].

{F1,n} A000045 {F7,n} A054413[ {0}
{F2,n} A000129 {F8,n} A041025[ {0}
{F3,n} A006190 {F9,n} A099371
{F4,n} A001076 {F10,n} A041041[ {0}
{F5,n} A052918[ {0} {F11,n} A049666
{F6,n} A005668 {F12,n} A041061[ {0}

Table 2. Examples of (k, ‘)-Fibonacci sequences listed in OEIS.

k\‘ 2 3 4 5

1 A001055 A006130 A006131 A015440
2 A002605 A015518 A063727 A002532
3 A007482 A030195 A015521 A015523
4 A090017 A015530 A057087 A015531
5 A015535 A015536 A015537 A057088
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1.1. Combinatorial interpretation

Fnþ1 counts the number of ways to tile a 1� n rectangle (called an n-board consisting of
cells labeled 1, 2, . . . , n) with 1� 1 squares and 1� 2 dominoes. For combinatorial
convenience it is defined fn ¼ Fnþ1 [6,7].

In the same way, for the k-Fibonacci numbers we shall obtain an analogous
combinatorial interpretation. Define a colour-square tiling to be a tiling of an n-board
by colour-squares and non-colour (or black) dominoes. If there are k different colours to
choose for the squares, the tilings generated in this way for an n-board are precisely
fk,n ¼ Fk,nþ1. From now on, we will write fn and Fn omitting sub-index k. For example,
the tiling in Figure 1 has two black dominoes followed by a colour string of length 4, and
so on.

By conditioning on whether the first tile is a square or a domino, we obtain the identity
fn ¼ kfn�1 þ fn�2. In addition, for convenience, we consider f0¼ 1 the number of tilings
for the empty 0-board.

It should be noted that if k colours are allowed for squares and ‘ colours are permitted
for dominoes, and gn represents the number of ways to tile an n-board with k-colour
squares and ‘-colour dominoes, by conditioning on whether the first tile is a square or
a domino, we obtain the identity gn ¼ kgn�1 þ ‘gn�2. In addition, for convenience, we
consider g0¼ 1 the number of tilings for the empty 0-board. Note that gn ¼ Gnþ1, where Gn

are the ðk, ‘Þ-Fibonacci numbers as presented in a previous subsection.
For the Fibonacci p-numbers the combinatorial interpretation follows by permitting

squares, dominoes and longer tiles until p-tiles in each n-board. If hn is the number of
tilings obtained in this way, then, as one can be checked easily, hn ¼ Fpðnþ 1Þ. As before,
we consider h0¼ 1.

2. Honsberger identities

From now on we will use, following [7] the concepts of breakable tiling and unbreakable
tiling. It is said that a tiling of an n-board is breakable at cell p, if the tiling can be
decomposed into two tilings, one covering cells 1 through p and the other covering cells
pþ 1 through n. On the other hand, a tiling is said to be unbreakable at cell p if a domino
occupies cells p and pþ 1 (Figure 2).

Table 3. The first Fibonacci p-step numbers without initial zeros.

p Sloane Name Sequence

3 A000073 Tribonacci {1, 1, 2, 4, 7, 13, 24, 44, 81, . . .}
4 A000078 Tetranacci {1, 1, 2, 4, 8, 15, 29, 56, 108, . . .}
5 A001591 Pentanacci {1, 1, 2, 4, 8, 16, 31, 61, 120, . . .}
6 A001592 Hexanacci {1, 1, 2, 4, 8, 16, 32, 63, 125, . . .}
7 A122189 Heptanacci {1, 1, 2, 4, 8, 16, 32, 64, 127, . . .}

1 2 3 4 5 6 7 8 9 10 11 12

Figure 1. A 4-colour 12-board with three dominoes.
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For example, the tiling of Figure 1 is breakable at cells 2, 4, 5, 6, 7, 8, 10, 11 and 12.
Observe that an n-tiling is always breakable at cell n.

Honsberger [2, p. 107] gives the following general relation for classical Fibonacci
numbers:

Honsberger Identities for classical Fibonacci numbers:

Fnþm ¼ Fn�1Fm þ FnFmþ1

This identity may be written as

fnþm�1 ¼ fn�2 fm�1 þ fn�1 fm ð1Þ

where fn ¼ Fnþ1 counts the number of n-tilings with squares and black dominoes.

Proof: Note, that Identity (1) is proved very easily considering the two possibilities for
cell n� 1 in an ðnþm� 1Þ-tiling. Either cell n� 2 is covered by the beginning of a
domino or is not. In the first case, it is said that the tiling is unbreakable at cell n� 1.
Otherwise it is said that the tiling is breakable at cell n� 1. And hence, Identity (1) is
proved (Figure 3).

Notice that the argument is directly applicable to k-Fibonacci numbers since the colour
does not apply here. This would not be the case if we consider n-tilings by colour squares
and colour dominoes. Then the identity changes accordingly to the number of colours
allowed for the dominoes.

1 2 p n

fp

        
fnp 

        

fn−(p+1)
      

fp−1
     

Unbreakable at cell p:

Breakable at cell p:

1 2 p p+1 n

Figure 2. An ðnÞ-board is either breakable or unbreakable at cell p.

1 2 n−1 n+m−1

fn−1 fm

 

fm−1fn−2

Unbreakable at cell n−1:

Breakable at cell n−1:

1 2 n−1 n+m−1 

Figure 3. A ðnþm� 1Þ-board is either unbreakable or breakable at cell n� 1.
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Corollary 1: If now fp ¼ Fk,pþ1 counts the number of k-colour square p-tilings with
(k-colour) squares and (black) dominoes, then Equation (1) applies.

If gn denotes the number of k-colour square and ‘-colour domino n-tilings
with (k-colour) squares and (‘-colour) dominoes, then the analogous equation to
Equation (1) is:

gnþm�1 ¼ ‘ � gn�2gm�1 þ gn�1gm ð2Þ

If hn ¼ Fpðnþ 1Þ denotes the number of n-tilings where squares, dominoes, etc. until
p-tiles are permitted, then the analogous equation to Equation (1) is:

hnþm�1 ¼ hn�1hm þ
Xp

k¼2

Xk�1

j¼1

hn�1�jhm�ðk�jÞ ð3Þ

Note that for the Fibonacci p-step numbers each ðnþm� 1Þ-board is unbreakable
cell n� 1 by a k-tile in k� 1 positions of the k-tile, as is shown in Figure 4 for the value
k¼ 4.

Now we shall extend the Honsberger identities by considering more segments (break-
able or unbreakable) in the corresponding tiling. Next we take three terms in previous
formulas.

3. 3-Term Honsberger identities

3-Term Honsberger Identities for classical Fibonacci numbers:

fnþmþp ¼ fn fm fp þ fn�1 fm�1 fp þ fnfm�1 fp�1 þ fn�1 fm�2 fp�1 ð4Þ

Proof: The result follows immediately by considering the two disjoint possibilities
(breakable or unbreakable) for the cells n and nþm (Figure 5).

If the tiling is breakable at cells n and nþm there are fn fm fp such tilings. In other
cases, if the board is breakable at cell n and unbreakable at cell nþm it results in

1 2 n−1 n+m−1

  

fn−1−1
 

Unbreakable at cell n−1 by a k-tile:

fm−(k−1)

fn−1−2 fm−(k−2)

fn−1−(k−1) fm−1

1 2 n−1 n+m−1 

1 2 n−1 n+m−1

k-tile
 

Figure 4. A ðnþm� 1Þ-board is unbreakable at cell n� 1 by an (unbreakable) k-tile in k� 1
positions of the k-tile (k¼ 4 here).
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fn�1 fm�1 fp tilings. If the board in unbreakable at cell n and breakable at cell nþm it results
in fnfm�1 fp�1. Finally, if the board is breakable both at cell n and at cell nþm there are
fn�1 fm�2 fp�1 such tilings.

Notice that Equation (4) may be written as follows:

fnþmþp ¼
X1

i, j¼0

fn�i fm�ðiþjÞ fp�j ð5Þ

Corollary 3: In the case n ¼ m ¼ p, Equation (4) reads as f3n ¼ f 3n þ 2f 2
n�1 fn þ f 2

n�1 fn�2,

or equivalently F2
k,n ¼ ðFk,3nþ1 � F3

k,nþ1Þ=ð2Fk,nþ1 þ Fk,n�1Þ.

Note that previous formula tells that, in particular, the quotient
ðFk,3nþ1 � F3

k,nþ1Þ=ð2Fk,nþ1 þ Fk,n�1Þ is a perfect square. For example, for k¼ 3 and n¼ 4
it is ðF3,13 � F3

3,5Þ=ð2F3,5 þ F3,3Þ ¼ F2
3,4, that is ð1, 543, 321� 1093Þ=ð2 � 109þ 10Þ ¼

1089 ¼ 332.

Corollary 4: Now if fp ¼ Fk,pþ1 counts the number of k-colour square p-tilings with
(k-colour) squares and (black) dominoes, then Equation (4) applies.

However, if gp denotes the number of k-colour square and ‘-colour domino p-tilings
with (k-colour) squares and (‘-colour) dominoes, then the analogous equation to
Equation (1) is:

gnþmþp ¼ gngmgp þ ‘gn�1gm�1gp þ ‘gngm�1gp�1 þ ‘
2gn�1gm�2gp�1 ð6Þ

4. Generalization

Previous expressions may be extended to 4-term Honsberger or more generally m-terms.
Here only the results for k-Fibonacci and ðk, ‘Þ-Fibonacci numbers are shown. We omit
the proofs because they are based on the same considerations as before, taking into
account the two possibilities (breakable or unbreakable) between two adjacent segments in
the corresponding tiling.

1 2 n−1 n+m n+m+p

fn fm

fm−1fn−1

Breakable

Unbreakable

fp−1 

fp

1 2 n−1   n n+m n+m+p

fn+m+p

??

 

Figure 5. A ðnþmþ pÞ-board is either unbreakable or breakable at cells n, and nþm.
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4.1. 4-Term Honsberger identities

For classical Fibonacci numbers (with fp ¼ Fpþ1), or k-Fibonacci numbers (with
fp ¼ Fk,pþ1), then:

fn1þn2þn3þn4 ¼
X1

i1, i2, i3¼0

fn1�i1 fn2�ði1þi2Þ fn3�ði2þi3Þ fn4�i3 ð7Þ

For ðk, ‘Þ-Fibonacci numbers (with gp ¼ Gpþ1), then:

gn1þn2þn3þn4 ¼
X1

i1, i2, i3¼0

‘i1þi2þi3gn1�i1gn2�ði1þi2Þgn3�ði2þi3Þgn4�i3 ð8Þ

4.2. m-Term Honsberger identities

For classical Fibonacci numbers (with fp ¼ Fpþ1), or k-Fibonacci numbers (with
fp ¼ Fk,pþ1), then:

fn1þ���þnm ¼
X1

i1,..., im�1¼0

fn1�i1 fn2�ði1þi2Þ . . . fnm�im�1 ð9Þ

For ðk, ‘Þ-Fibonacci numbers (with gp ¼ Gpþ1), then:

gn1þ���þnm ¼
X1

i1,..., im�1¼0

‘i1þ���þim�1gn1�i1gn2�ði1þi2Þ . . . gnm�im�1 ð10Þ

5. Conclusions

The techniques presented in this article are simple and powerful. Counting k-colour square
tilings enables us to give visual interpretations to Honsberger-type expressions involving
k-Fibonacci numbers, ðk, ‘Þ-Fibonacci numbers or Fibonacci p-step numbers. Similar
arguments are also applicable to other identities.
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