PROBLEM OF THE WEEK

Solution of Problem No. 5 (Spring 2005 Series)
Problem: Suppose $\left\{a_{n}\right\}_{n=1}^{\infty}$ be recursively defined by $a_{0}>1, a_{1}>0, a_{2}>0$,

$$
a_{n+3}=\frac{1+a_{n+1}+a_{n+2}}{a_{n}}, \quad \text { for } \quad n=0,1,2, \ldots
$$

Show that a_{n} has period 8, i. e.

$$
a_{n+8}=a_{n} \quad \text { for any } \quad n \geq 0
$$

Solution (by the Panel)

Subtract the equations

$$
\begin{aligned}
& a_{n+3} a_{n}=1+a_{n+1}+a_{n+2} \\
& a_{n+2} a_{n-1}=1+a_{n}+a_{n+1}
\end{aligned}
$$

to get

$$
a_{n+3} a_{n}-a_{n+2} a_{n-1}=a_{n+2}-a_{n},
$$

or

$$
a_{n}\left(a_{n+3}+1\right)=a_{n+2}\left(a_{n-1}+1\right)
$$

Add $a_{n} a_{n+2}$ to both sides to get

$$
a_{n}\left(1+a_{n+2}+a_{n+3}\right)=a_{n+2}\left(1+a_{n-1}+a_{n}\right) .
$$

Using the recursive equation, we get

$$
a_{n} a_{n+1} a_{n+4}=a_{n+2} a_{n+1} a_{n-2} .
$$

Since all terms are positive, we cancel a_{n+1} to obtain

$$
a_{n-2} a_{n+2}=a_{n} a_{n+4}
$$

Replace n by $n-2$ to get

$$
a_{n} a_{n-4}=a_{n+2} a_{n-2}
$$

The last two identities imply $a_{n} a_{n-4}=a_{n} a_{n+4}$, therefore

$$
a_{n-4}=a_{n+4}, \quad n \geq 4 \quad \Rightarrow \quad a_{n}=a_{n+8}, \quad n \geq 0
$$

Also solved by:
Undergraduates: Alan Bernstein, Justin Woo (Jr. ECE)

Graduates: Tom Engelsman, Niru Kumari (ME)
Others: Georges Ghosn (Quebec), Byungsoo Kim (Seoul Natl. Univ.), Jeff Ledford (Gainesville, GA), A. Plaza (ULPGC, Spain), Steve Spindler, Daniel Vacaru (Pitesti, Romania), Gabriel Vrinceanu (Bucharest)

Update on Problem No. 4:
That problem was solved also by Justin Woo (Jr. ECE).

