
PROBLEM OF THE WEEK

Solution of Problem No. 14 (Spring 2006 Series)

Problem: Let P (x) be a polynomial of degree n ≥ 2 with real coefficients of the form

P (x) = axn + bxn−1 + cxn−2 + · · · , a 6= 0.

Show that if b2 − 2n

n− 1
ac < 0, then P (x) can not have more than n− 2 real zeros.

Solution (by Prithwijit De, Ireland; edited by the Panel)

Suppose P (x) has more than (n− 2) real roots. Since the number of complex roots of

a polynomial with real coefficients is even, P (x) must have n real roots. Let the roots be

x1, · · · , xn. Then by the Cauchy–Schwarz inequality, we have the following:
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Also,
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b2

a2
and
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i =

b2 − 2ac

a2
. Substituting these expressions in the

inequality yields

n(b2 − 2ac)− b2 ≥ 0 ⇒ b2 − 2n

n− 1
ac ≥ 0

Therefore, if the hypothesis of the problem holds then the number of real roots of P (x)

will not be more than n− 2.
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