PROBLEM OF THE WEEK
 Solution of Problem No. 5 (Spring 2007 Series)

Problem: Determine all real $a>0$ such that the series,

$$
\sum_{n=1}^{\infty} a^{\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)}
$$

converges.
Solution (by Brad Lucier, Professor of Math, Purdue U)
Clearly, $a<1$ for convergence, otherwise the terms don't tend to zero. Call the sum S. We have

$$
\begin{equation*}
\log n<\sum_{k=1}^{n} \frac{1}{k} \leq 1+\log n \tag{1}
\end{equation*}
$$

so

$$
S \leq \sum_{n=1}^{\infty} a^{\log n}=\sum_{n=1}^{\infty} n^{\log a}
$$

and the right hand side converges if $\log a<-1$, i.e., $a<e^{-1}$.
Similarly, using the other part of (1),

$$
S>a \sum_{n=1}^{\infty} a^{\log n}=a \sum_{n=1}^{\infty} n^{\log a},
$$

which diverges if $a \geq e^{-1}$
Also solved by:
$\underline{\text { Undergraduates : Alan Bernstein (Sr. ECE), Noah Blach }}$
Others : Ángel Plaza (ULPGC, Spain), Manuel Barbero (New York), Kouider Ben-Naoum (Belgium), Georges Ghosn (Quebec), Steven Landy (IUPUI, Physics), Kishin K. Sadarangani (Professor, ULPGC, Spain), Steve Zelaznik (BS. Econ. and Applied Math 06)

