Hence,

$$
\begin{aligned}
R=\frac{221}{2}, \cos \alpha & =\frac{140}{221}, \sin \alpha=\frac{171}{221} \\
\cos \beta & =\frac{104}{221}, \sin \beta=\frac{195}{221} \\
\cos \gamma & =\frac{85}{221}, \sin \gamma=\frac{204}{221},
\end{aligned}
$$

and our result for the perimeter of $\triangle A C E$.
It is easy to check that $\angle B F D=\alpha, \angle F D B=\beta, \angle D B F=\gamma$ so that $\angle B A F=\pi-\beta, \angle D E F=\pi-\gamma$.
Applying the cosine formula to $\triangle B A F$ and $\triangle D E F$ respectively, we obtain $B F=195$ and $D F=204$.
It follows, as claimed, that the area of

$$
\triangle B D F=\frac{1}{2}(\overline{B F})(\overline{D F}) \sin \angle B F D=\frac{1}{2}(195)(204) \frac{171}{221}=15390 .
$$

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; David E. Manes, Oneonta, NY; Boris Rays, Chesapeake, VA; David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

- 5046: Proposed by R.M. Welukar of Nashik, India and K.S. Bhanu, and M.N. Deshpande of Nagpur, India.
Let $4 n$ successive Lucas numbers $L_{k}, L_{k+1}, \cdots, L_{k+4 n-1}$ be arranged in a $2 \times 2 n$ matrix as shown below:

$$
\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & 2 n \\
L_{k} & L_{k+3} & L_{k+4} & L_{k+7} & \cdots & L_{k+4 n-1} \\
L_{k+1} & L_{k+2} & L_{k+5} & L_{k+6} & \cdots & L_{k+4 n-2}
\end{array}\right)
$$

Show that the sum of the elements of the first and second row denoted by R_{1} and R_{2} respectively can be expressed as

$$
\begin{gathered}
R_{1}=2 F_{2 n} L_{2 n+k} \\
R_{2}=F_{2 n} L_{2 n+k+1}
\end{gathered}
$$

where $\left\{L_{n}, n \geq 1\right\}$ denotes the Lucas sequence with $L_{1}=1, L_{2}=3$ and $L_{i+2}=L_{i}+L_{i+1}$ for $i \geq 1$ and $\left\{F_{n}, n \geq 1\right\}$ denotes the Fibonacci sequence, $F_{1}=1, F_{2}=1, F_{n+2}=F_{n}+F_{n+1}$.

Solution by Angel Plaza and Sergio Falcon, Las Palmas, Gran Canaria, Spain.
$R_{1}=L_{k}+L_{k+3}+L_{k+4}+L_{k+7}+\cdots+L_{k+4 n-2}+L_{k+4 n-1}$, and since $L_{i}=F_{i-1}+F_{i+1}$, we have:

$$
\begin{aligned}
R_{1} & =F_{k-1}+F_{k+1}+F_{k+2}+F_{k+4}+F_{k+3}+F_{k+5}+\cdots+F_{k+4 n-2}+F_{k+4 n} \\
& =F_{k-1}+\sum_{j=1}^{4 n} F_{k+j}-F_{k+4 n-1} \\
& =F_{k-1}-F_{k+4 n-1}+\sum_{j=0}^{4 n+k} F_{j}-\sum_{j=0}^{k} F_{j}
\end{aligned}
$$

And since $\sum_{j=0}^{m} F_{j}=F_{m+2}-1$ we have:

$$
R_{1}=F_{k-1}-F_{k+4 n-1}+F_{k+4 n+2}-1-F_{k+2}+1=2 F_{k+4 n}-2 F_{k}
$$

where in the last equation it has been used that $F_{i+2}-F_{i}=F_{i+1}+F_{i}-F_{i-1}=2 F_{i}$. Now, using the relation $L_{n} F_{m}=F_{n+m}-(-1)^{m} F_{n-m}$ (S. Vajda, Fibonacci and Lucas numbers, and the Golden Section: Theory and Applications, Dover Press (2008)) in the form $L_{2 n+k} F_{2 n}=F_{4 n+k}-(-1)^{2 n} F_{2 n+k-2 n}$ it is deduced $R_{1}=2 F_{2 n} L_{2 n+k}$.
In order to prove the fomula for R_{2} note that

$$
R_{1}+R_{2}=\sum_{j=0}^{4 n-1} L_{k+j}=\sum_{j=0}^{4 n+k-1} L_{j}-\sum_{j=0}^{k-1} L_{j}
$$

As before, $\sum_{j=0}^{4 n+k-1} L_{j}=F_{k+4 n}+F_{k+4 n+2}$, while $\sum_{j=0}^{k-1} L_{j}=F_{k}+F_{k+2}$, so

$$
\begin{aligned}
R_{1}+R_{2} & =F_{k+4 n}-F_{k}+F_{k+4 n+2}-F_{k+2} \\
& =L_{2 n+k} F_{2 n}+L_{2 n+k+2} F_{2 n}
\end{aligned}
$$

And therefore,

$$
R_{2}=F_{2 n}\left(L_{2 n+k+2}-L_{2 n+k}\right)=F_{2 n} L_{2 n+k+1}
$$

Also solved by Paul M. Harms, North Newton, KS; John Hawkins and David Stone (jointly), Statesboro, GA, and the proposers.)

- 5047: Proposed by David C. Wilson, Winston-Salem, N.C.

Find a procedure for continuing the following pattern:

$$
\begin{aligned}
& S(n, 0)=\sum_{k=0}^{n}\binom{n}{k}=2^{n} \\
& S(n, 1)=\sum_{k=0}^{n}\binom{n}{k} k=2^{n-1} n \\
& S(n, 2)=\sum_{k=0}^{n}\binom{n}{k} k^{2}=2^{n-2} n(n+1)
\end{aligned}
$$

