Hence,

$$R = \frac{221}{2}, \cos \alpha = \frac{140}{221}, \sin \alpha = \frac{171}{221}$$
$$\cos \beta = \frac{104}{221}, \sin \beta = \frac{195}{221}$$
$$\cos \gamma = \frac{85}{221}, \sin \gamma = \frac{204}{221},$$

and our result for the perimeter of  $\triangle ACE$ .

It is easy to check that  $\angle BFD = \alpha, \angle FDB = \beta, \angle DBF = \gamma$  so that  $\angle BAF = \pi - \beta, \angle DEF = \pi - \gamma$ .

Applying the cosine formula to  $\triangle BAF$  and  $\triangle DEF$  respectively, we obtain BF = 195 and DF = 204.

It follows, as claimed, that the area of

$$\triangle BDF = \frac{1}{2} \left( \overline{BF} \right) \left( \overline{DF} \right) \sin \angle BFD = \frac{1}{2} (195)(204) \frac{171}{221} = 15390.$$

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; David E. Manes, Oneonta, NY; Boris Rays, Chesapeake, VA; David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 5046: Proposed by R.M. Welukar of Nashik, India and K.S. Bhanu, and M.N. Deshpande of Nagpur, India.

Let 4n successive Lucas numbers  $L_k, L_{k+1}, \dots, L_{k+4n-1}$  be arranged in a  $2 \times 2n$  matrix as shown below:

$$\begin{pmatrix}
1 & 2 & 3 & 4 & \cdots & 2n \\
L_k & L_{k+3} & L_{k+4} & L_{k+7} & \cdots & L_{k+4n-1} \\
L_{k+1} & L_{k+2} & L_{k+5} & L_{k+6} & \cdots & L_{k+4n-2}
\end{pmatrix}$$

Show that the sum of the elements of the first and second row denoted by  $R_1$  and  $R_2$  respectively can be expressed as

$$R_1 = 2F_{2n}L_{2n+k}$$

$$R_2 = F_{2n} L_{2n+k+1}$$

where  $\{L_n, n \geq 1\}$  denotes the Lucas sequence with  $L_1 = 1, L_2 = 3$  and  $L_{i+2} = L_i + L_{i+1}$  for  $i \geq 1$  and  $\{F_n, n \geq 1\}$  denotes the Fibonacci sequence,  $F_1 = 1, F_2 = 1, F_{n+2} = F_n + F_{n+1}$ .

Solution by Angel Plaza and Sergio Falcon, Las Palmas, Gran Canaria, Spain.

 $R_1 = L_k + L_{k+3} + L_{k+4} + L_{k+7} + \dots + L_{k+4n-2} + L_{k+4n-1}$ , and since  $L_i = F_{i-1} + F_{i+1}$ , we have:

$$R_1 = F_{k-1} + F_{k+1} + F_{k+2} + F_{k+4} + F_{k+3} + F_{k+5} + \dots + F_{k+4n-2} + F_{k+4n}$$

$$= F_{k-1} + \sum_{j=1}^{4n} F_{k+j} - F_{k+4n-1}$$

$$= F_{k-1} - F_{k+4n-1} + \sum_{j=0}^{4n+k} F_j - \sum_{j=0}^k F_j$$

And since  $\sum_{j=0}^{m} F_j = F_{m+2} - 1$  we have:

$$R_1 = F_{k-1} - F_{k+4n-1} + F_{k+4n+2} - 1 - F_{k+2} + 1 = 2F_{k+4n} - 2F_k$$

where in the last equation it has been used that  $F_{i+2} - F_i = F_{i+1} + F_i - F_{i-1} = 2F_i$ . Now, using the relation  $L_n F_m = F_{n+m} - (-1)^m F_{n-m}$  (S. Vajda, Fibonacci and Lucas numbers, and the Golden Section: Theory and Applications, Dover Press (2008)) in the form  $L_{2n+k} F_{2n} = F_{4n+k} - (-1)^{2n} F_{2n+k-2n}$  it is deduced  $R_1 = 2F_{2n} L_{2n+k}$ . In order to prove the formula for  $R_2$  note that

$$R_1 + R_2 = \sum_{j=0}^{4n-1} L_{k+j} = \sum_{j=0}^{4n+k-1} L_j - \sum_{j=0}^{k-1} L_j$$

As before, 
$$\sum_{j=0}^{4n+k-1} L_j = F_{k+4n} + F_{k+4n+2}$$
, while  $\sum_{j=0}^{k-1} L_j = F_k + F_{k+2}$ , so

$$R_1 + R_2 = F_{k+4n} - F_k + F_{k+4n+2} - F_{k+2}$$
  
=  $L_{2n+k}F_{2n} + L_{2n+k+2}F_{2n}$ 

And therefore,

$$R_2 = F_{2n} (L_{2n+k+2} - L_{2n+k}) = F_{2n} L_{2n+k+1}$$

Also solved by Paul M. Harms, North Newton, KS; John Hawkins and David Stone (jointly), Statesboro, GA, and the proposers.)

• 5047: Proposed by David C. Wilson, Winston-Salem, N.C. Find a procedure for continuing the following pattern:

$$S(n,0) = \sum_{k=0}^{n} \binom{n}{k} = 2^n$$

$$S(n,1) = \sum_{k=0}^{n} \binom{n}{k} k = 2^{n-1}n$$

$$S(n,2) = \sum_{k=0}^{n} {n \choose k} k^2 = 2^{n-2} n(n+1)$$