\# 5060 Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Show that there exists $c \in(0, \pi / 2)$ sucht that

$$
\int_{0}^{c} \sqrt{\sin x} d x+c \sqrt{\cos c}=\int_{c}^{\pi / 2} \sqrt{\cos x} d x+(\pi / 2-c) \sqrt{\sin c}
$$

Solution: by Angel Plaza, University of Las Palmas de Gran Canaria, 35017Las Palmas G.C., Spain.

Consider the continuos function $F(x)$ defined on $[0, \pi / 2]$ as follows:

$$
F(x)=\int_{0}^{x} \sqrt{\sin t} d t+x \sqrt{\cos x}-\int_{x}^{\pi / 2} \sqrt{\cos t} d t+(\pi / 2-x) \sqrt{\sin x}
$$

Note that:

$$
\begin{aligned}
F(0) & =-\int_{0}^{\pi / 2} \sqrt{\cos t} d t<0 \\
F(\pi / 2) & =\int_{0}^{\pi / 2} \sqrt{\sin t} d t>0
\end{aligned}
$$

Hence, by the Bolzano's Theorem there exist $c \in(0, \pi / 2)$ sucht that $F(c)=0$ and the given equality is done.

