Solution to AMM Problem \# 11441

Ángel Plaza \& Sergio Falcón
Department of Mathematics, Universidad de Las Palmas de Gran Canaria
35017-Las Palmas G.C. SPAIN,

Problem\# 11441 Proposed by Y. N. Aliyev, Qafqaz University, Khyrdalan, Azerbaijan Let $n \geq 4$, let A_{0}, \ldots, A_{n-1} be the vertices of a convex polygon, and for each i let B_{i} be a point in the interior of the segment $A_{i} A_{i+1}$. (Here, and throughout, indices of points are taken modulo n.) Let C_{i} denote the intersection of diagonals $B_{i-2} B_{i}$ and $B_{i-1} B_{i+1}$. Let $a(p, q, r)$ denote the area of the triangle with vertices p, q, r. Show that

$$
\sum_{n=1}^{n-1} \frac{1}{a\left(A_{i}, B_{i}, B_{i-1}\right)} \geq \sum_{n=1}^{n-1} \frac{1}{a\left(C_{i}, B_{i}, B_{i-1}\right)} .
$$

Solution. This problem is solved as Theorem 2.1 in [1]. The solution bellow is taken from that reference, and it is based in the following result [Lemma 2.1. in [1]].

Lemma: Let $A B C D$ be a convex quadrilateral and a line through the intersection point O of diagonals $A C$ and $B D$ intersect the sides $A D$ and $B C$ at the points K and L. Then the sum $\frac{1}{a(A, O, K)}+\frac{1}{a(B, O, L)}$ is minimal if and only if $K L \| A B$.

In the situation of the problem, let a line through the point B_{i} parallel to the line $B_{i-1} B_{i+1}$ intersect the line $A_{i-1} A_{i}$ at the point A_{i}^{\prime} and the line $A_{i+1} A_{i+2}$ at the point $A_{i+1}^{\prime \prime}$, and let the lines $A_{i-1}^{\prime} A_{i}^{\prime \prime}$ and $A_{i}^{\prime} A_{i+1}^{\prime \prime}$ meet at C_{i}^{\prime}, for $i=0,1, \ldots, n-1$ (see Figure 1 where $n=5$).

Figure 1. The case of the problem for $n=5$
From the Lemma it follows that

$$
\begin{aligned}
\frac{1}{a\left(B_{n-1}, A_{0}^{\prime}, B_{0}\right)}+\frac{1}{a\left(B_{0}, A_{1}^{\prime \prime}, B_{1}\right)} & \leq \frac{1}{\frac{1}{a\left(B_{n-1}, A_{0}, B_{0}\right)}+\frac{1}{a\left(B_{0}, A_{1}, B_{1}\right)}}, \\
\frac{1}{a\left(B_{0}, C_{1}^{\prime}, B_{1}\right)}+\frac{1}{a\left(B_{1}, A_{2}^{\prime \prime}, B_{2}\right)} & \leq \frac{1}{a\left(B_{0}, A_{1}^{\prime \prime}, B_{1}\right)}+\frac{1}{a\left(B_{1}, A_{2}, B_{2}\right)}, \\
\frac{1}{a\left(B_{1}, C_{2}^{\prime}, B_{2}\right)}+\frac{1}{a\left(B_{2}, A_{3}^{\prime \prime}, B_{3}\right)} & \leq \frac{1}{a\left(B_{1}, A_{2}^{\prime \prime}, B_{2}\right)}+\frac{1}{a\left(B_{2}, A_{3}, B_{3}\right)},
\end{aligned}
$$

$$
\frac{1}{a\left(B_{n-3}, C_{n-2}^{\prime}, B_{n-2}\right)}+\frac{1}{\frac{1}{a\left(B_{n-2}, A_{n-1}^{\prime \prime}, B_{n-1}\right)}} \leq \frac{1}{\frac{1}{a\left(B_{n-3}, A_{n-2}^{\prime \prime}, B_{n-2}\right)}+\frac{1}{a\left(B_{n-2}, A_{n-1}, B_{n-1}\right)}, ., ~}
$$

$$
\frac{1}{a\left(B_{n-2}, C_{n-1}^{\prime}, B_{n-1}\right)}+\frac{1}{a\left(B_{n-1}, C_{0}^{\prime}, B_{0}\right)} \leq \frac{1}{\frac{1}{a\left(B_{n-2}, A_{n-1}^{\prime \prime}, B_{n-1}\right)}+\frac{1}{a\left(B_{n-1}, A_{0}^{\prime}, B_{0}\right)}}
$$

By summing these n inequalities, canceling common terms from both sides and noting that $a\left(B_{i} C_{i}^{\prime} B_{i-1}\right)=a\left(B_{i} C_{i} B_{i-1}\right)$ (because the quadrilateral with vertices $\left.B_{i}, C_{i}^{\prime}, B_{i-1}, C_{i}\right]$ is a parallelogram, for $i=0,1, \ldots, n-1)$, the required inequality is obtained.

References

[1] Aliyev Y. N., New inequalities on triangle areas, Journal of Qafqaz University, 25 (2009) 129-135.

