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Let a,b, and ¢ be the lengths of the sides of a nondegenerate triangle, let p =
(a+b+c)/2, and let r and R be the inradius and circumradius of the triangle,
respectively. Show that
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and determine the cases of equality.

Solution:

Second inequality is the arithmetic and geometric mean inequality, since
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is p—b=p—c, that is b = ¢, or an isosceles triangle.

a
5 In addition, for this inequality, the only case of equality

For the first inequality, note that for the case of an equilateral triangle
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since, in this case, r = ——, and R = ——
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In general, the circumradius of a triangle is connected to the inradius and

the semiperimeter by R = afbc. Then
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But if A denotes the area of the triangle, then A = pr, and also, by Heron’s
formula A% = p(p — a)(p — b)(p — ¢), from where
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So, the first inequality becomes
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Let us rename p—a = A, p—b= B and p — ¢ = C, then we have to prove
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Now, by the arithmetic and geometric mean inequality
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That is,
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WAB < A+ B; 2VAC < A+ C; 4/BC < (JE+ @) .

So the inequality (1) is proved. Note that the equality holds only if A = B = C,

that is in the case of an equilateral triangle.



