Problem 11306 (Proposed by Alexandru Rosoiu, University of Bucharest, Bucharest, Romania)

Solution by Ángel Plaza
Universidad de Las Palmas de Gran Canaria,
35017-Las Palmas G.C., Spain
aplaza@dmat.ulpgc.es

Let a, b, and c be the lengths of the sides of a nondegenerate triangle, let $p=$ $(a+b+c) / 2$, and let r and R be the inradius and circumradius of the triangle, respectively. Show that

$$
\frac{a}{2} \cdot \frac{4 r-R}{R} \leq \sqrt{(p-b)(p-c)} \leq \frac{a}{2}
$$

and determine the cases of equality.

Solution:

Second inequality is the arithmetic and geometric mean inequality, since
$\frac{p-b+p-c}{2}=\frac{a}{2}$. In addition, for this inequality, the only case of equality is $p-b=p-c$, that is $b=c$, or an isosceles triangle.

For the first inequality, note that for the case of an equilateral triangle

$$
\frac{a}{2} \cdot \frac{4 r-R}{R}=\frac{a}{2}
$$

since, in this case, $r=\frac{a}{3 \sqrt{3}}$, and $R=\frac{2 a}{3 \sqrt{3}}$
In general, the circumradius of a triangle is connected to the inradius and the semiperimeter by $R=\frac{a b c}{4 r p}$. Then

$$
\frac{4 r-R}{R}=\frac{4 r-\frac{a b c}{4 r p}}{\frac{a b c}{4 r p}}=\frac{16 p r^{2}}{a b c}-1
$$

But if Δ denotes the area of the triangle, then $\Delta=p r$, and also, by Heron's formula $\Delta^{2}=p(p-a)(p-b)(p-c)$, from where

$$
\frac{4 r-R}{R}=\frac{16(p-a)(p-b)(p-c)}{a b c}-1
$$

So, the first inequality becomes

$$
\begin{gathered}
\frac{a}{2} \cdot\left(\frac{16(p-a)(p-b)(p-c)}{a b c}-1\right) \leq \sqrt{(p-b)(p-c)} \\
\left(\frac{16(p-a)(p-b)(p-c)}{2 b c}\right) \leq \sqrt{(p-b)(p-c)}+\frac{a}{2} \\
\left(\frac{16(p-a)(p-b)(p-c)}{2 b c}\right) \leq \sqrt{(p-b)(p-c)}+\frac{p-b+p-c}{2}
\end{gathered}
$$

Let us rename $p-a=A, p-b=B$ and $p-c=C$, then we have to prove

$$
\begin{gather*}
\left(\frac{16 A B C}{2(A+C)(A+B)}\right) \leq \sqrt{B C}+\frac{B+C}{2} \\
16 A B C \leq 2(A+C)(A+B)\left(\sqrt{B C}+\frac{B+C}{2}\right) \\
16 A B C \leq(A+C)(A+B)(2 \sqrt{B C}+B+C) \\
16 A B C \leq(A+C)(A+B)(\sqrt{B}+\sqrt{C})^{2} \tag{1}
\end{gather*}
$$

Now, by the arithmetic and geometric mean inequality

$$
\sqrt{A B} \leq \frac{A+B}{2} ; \sqrt{A C} \leq \frac{A+C}{2} ; \sqrt{B C} \leq\left(\frac{\sqrt{B}+\sqrt{C}}{2}\right)^{2},
$$

That is,

$$
2 \sqrt{A B} \leq A+B ; 2 \sqrt{A C} \leq A+C ; 4 \sqrt{B C} \leq(\sqrt{B}+\sqrt{C})^{2}
$$

So the inequality (1) is proved. Note that the equality holds only if $A=B=C$, that is in the case of an equilateral triangle.

