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Let a, b, and c be the lengths of the sides of a nondegenerate triangle, let p =

(a + b + c)/2, and let r and R be the inradius and circumradius of the triangle,

respectively. Show that
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and determine the cases of equality.

Solution:

Second inequality is the arithmetic and geometric mean inequality, since
p − b + p − c

2
=

a

2
. In addition, for this inequality, the only case of equality

is p − b = p − c, that is b = c, or an isosceles triangle.

For the first inequality, note that for the case of an equilateral triangle
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In general, the circumradius of a triangle is connected to the inradius and

the semiperimeter by R =
abc

4rp
. Then
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But if ∆ denotes the area of the triangle, then ∆ = pr, and also, by Heron’s

formula ∆2 = p(p − a)(p − b)(p − c), from where
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So, the first inequality becomes
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Let us rename p − a = A, p − b = B and p − c = C, then we have to prove
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Now, by the arithmetic and geometric mean inequality
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That is,
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So the inequality (1) is proved. Note that the equality holds only if A = B = C,

that is in the case of an equilateral triangle.
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