Solution to Problem \# B-1055

Jesús R. Pulido and Lucana Santos (students), Ángel Plaza and Sergio Falcón Department of Mathematics, Universidad de Las Palmas de Gran Canaria 35017-Las Palmas G.C. SPAIN.

Problem\# B-1055 Proposed by G. C. Greubel, Newport News, VA
Find all integer solutions to the equation

$$
x^{2}+6 x y+4 y^{2}=4
$$

Solution. The equation may be written as $(x+3 y)^{2}-5 y^{2}=4$; or, by doing $x=2(u-3 v)$, and $y=2 v$, as $u^{2}-5 v^{2}=1$, which is a Pell's equation. Since 5 is not a perfect square, last equation has infinitely many solutions.

The smallest non-trivial solution of the equation $u^{2}-5 v^{2}=1$, where $u>0$ and $v>0$, for which x, y are integers, is $(u, v)=\left(\frac{3}{2}, \frac{1}{2}\right)$. Thus, for every solution (u, v), there is an integer n such that $u+v \sqrt{5}= \pm\left(\frac{3}{2}+\frac{1}{2} \sqrt{5}\right)^{n}$. Considering $\phi=\frac{1}{2}+\frac{1}{2} \sqrt{5}$, and $\varphi=1-\phi=-1 / \phi=\frac{1}{2}-\frac{1}{2} \sqrt{5}$, then $\phi^{2}=\phi+1$, and $\varphi^{2}=\varphi+1$, and therefore

$$
\begin{aligned}
& u= \pm \frac{(1+\phi)^{n}+(1+\varphi)^{n}}{2}= \pm \frac{\phi^{2 n}+\varphi^{2 n}}{2}= \pm \frac{L_{2 n}}{2}= \pm \frac{F_{2 n+1}+F_{2 n-1}}{2} \\
& v= \pm \frac{(1+\phi)^{n}-(1+\varphi)^{n}}{2 \sqrt{5}}= \pm \frac{\phi^{2 n}-\varphi^{2 n}}{2 \sqrt{5}}= \pm \frac{F_{2 n}}{2}
\end{aligned}
$$

For example, for $u=\frac{F_{2 n+1}+F_{2 n-1}}{2}$ and $v=\frac{F_{2 n}}{2}$ it is obtained:

$$
\begin{aligned}
& x=2 u-6 v=F_{2 n+1}+F_{2 n-1}-3 F_{2 n}=-2 F_{2 n-2} \\
& y=2 v=F_{2 n}
\end{aligned}
$$

Taking into account also the other possibilities for u and v, all integer solutions to the equation $x^{2}+6 x y+4 y^{2}=4$ are:

$$
\begin{array}{ll}
(x, y)=\left(2 F_{2 n},-F_{2(n-1)}\right), & (x, y)=\left(2 F_{2 n},-F_{2(n+1)}\right) \\
(x, y)=\left(-2 F_{2 n}, F_{2(n-1)}\right), & (x, y)=\left(-2 F_{2 n}, F_{2(n+1)}\right)
\end{array}
$$

