Solution to Problem \# B-1061

Ángel Plaza \& Sergio Falcón
Department of Mathematics, Universidad de Las Palmas de Gran Canaria
35017-Las Palmas G.C. SPAIN,

Problem\# B-1061 Proposed by H.-J. Seiffert, Berlin, Germany
Show that, for all positive integers n,

$$
\sum_{k=1}^{n}(-1)^{\left\lfloor\frac{k}{2}\right\rfloor} \frac{F_{k}}{F_{k+1}}\left(\prod_{j=k}^{n} F_{j}\right)^{2}=(-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor} \frac{F_{n}}{F_{n+1}}
$$

Solution. By induction.
For $n=1$ the equality becomes trivial. Let us suppose the equality is true for integer n. Then for $n+1$ we have to prove that

$$
\sum_{k=1}^{n+1}(-1)^{\left\lfloor\frac{k}{2}\right\rfloor} \frac{F_{k}}{F_{k+1}}\left(\prod_{j=k}^{n+1} F_{j}\right)^{2}=(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{F_{n+1}}{F_{n+2}}
$$

We denote by $(L H S)_{n+1}$ the Left-Hand Side (LHS) of the previous equality, that is for the case $n+1$, and respectively by $(L H S)_{n}$ for n. Then we have:

$$
(L H S)_{n+1}=\left(F_{n+1}\right)^{2}\left[(L H S)_{n}+(-1)^{\left\lfloor\frac{n+1}{2}\right\rfloor} \frac{F_{n+1}}{F_{n+2}}\right]
$$

Where, by the induction hypothesis:

$$
(L H S)_{n+1}=\left(F_{n+1}\right)^{2}\left[(-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor} \frac{F_{n}}{F_{n+1}}+(-1)^{\left\lfloor\frac{n+1}{2}\right\rfloor} \frac{F_{n+1}}{F_{n+2}}\right]
$$

And by the Simson formula,

$$
(L H S)_{n+1}=\left(F_{n+1}\right)^{2} \frac{(-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor}(-1)^{n+1}}{F_{n+1} F_{n+2}}=(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{F_{n+1}}{F_{n+2}}
$$

Which proves the equality for the case $n+1$.

