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Problem# B-1061 Proposed by H.-J. Seiffert, Berlin, Germany
Show that, for all positive integersn,
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Solution. By induction.
For n = 1 the equality becomes trivial. Let us suppose the equality is true for integern. Then for
n + 1 we have to prove that
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We denote by(LHS)n+1 the Left-Hand Side (LHS) of the previous equality, that is for the case
n + 1, and respectively by(LHS)n for n. Then we have:
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Where, by the induction hypothesis:
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And by the Simson formula,
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Which proves the equality for the casen + 1. �
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