Solution to Problem \# B-1063

Ángel Plaza and Sergio Falcón
Department of Mathematics, Universidad de Las Palmas de Gran Canaria 35017-Las Palmas G.C. SPAIN

B-1063 Proposed by José Luis Díaz-Barrero, Universidad Politécnica de Cataluña, Barcelona, Spain

Let n be a positive integer. Prove that

$$
1+8 \sum_{k=1}^{n} \frac{F_{2 k}^{2}}{F_{k}^{2}+L_{k}^{2}}<\frac{4}{3}\left(F_{n} F_{n+1}+1\right)\left(L_{n} L_{n+2}-1\right) .
$$

Solution. For $n=1$ the inequality reads

$$
\begin{aligned}
1+8 \frac{F_{2}^{2}}{F_{1}^{2}+L_{1}^{2}} & <\frac{4}{3}\left(F_{1} F_{2}+1\right)\left(L_{1} L_{3}-1\right) \\
1+8 \frac{1}{1+1} & <\frac{4}{3} \cdot 6 \\
1+4 & <8
\end{aligned}
$$

In the following we use that $F_{2 k}=F_{k} L_{k}$:

$$
\begin{aligned}
1+8 \sum_{k=1}^{n} \frac{F_{2 k}^{2}}{F_{k}^{2}+L_{k}^{2}} & =1+8 \sum_{k=1}^{n} \frac{F_{k}^{2} L_{k}^{2}}{F_{k}^{2}+L_{k}^{2}}<1+8 \sum_{k=1}^{n} \frac{F_{k}^{2} L_{k}^{2}}{2 F_{k}^{2}} \\
& <1+4 \sum_{k=1}^{n} L_{k}^{2}=1+4\left(L_{n} L_{n+1}-2\right) \\
& =1+4\left(L_{n} L_{n+2}-L_{n}^{2}-2\right)<4\left(L_{n} L_{n+2}-1\right) .
\end{aligned}
$$

Now tanking into account that for $n>1,4 \leq \frac{4}{3}\left(F_{n} F_{n+1}+1\right)$, the problem is done.

It should be noted that the proposed inequality may be improved, for example, in the following way, and with a similar proof:

For any integer $n \geq 2$ it holds

$$
1+8 \sum_{k=1}^{n} \frac{F_{2 k}^{2}}{F_{k}^{2}+L_{k}^{2}}<L_{n} L_{n+2} .
$$

