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Let n be a positive integer. Prove that
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Solution. Forn = 1 the inequality reads
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In the following we use thatF2k = FkLk:

1 + 8
n

∑

k=1

F
2
2k

F 2
k

+ L2
k

= 1 + 8
n

∑

k=1

F
2
k
L

2
k

F 2
k

+ L2
k

< 1 + 8
n

∑

k=1

F
2
k
L

2
k

2F 2
k

< 1 + 4
n

∑

k=1

L
2

k
= 1 + 4 (LnLn+1 − 2)

= 1 + 4
(

LnLn+2 − L
2

n
− 2

)

< 4 (LnLn+2 − 1) .

Now tanking into account that forn > 1, 4 ≤
4

3
(FnFn+1 + 1), the problem is done. �

It should be noted that the proposed inequality may be improved, for example, in the
following way, and with a similar proof:

For any integern ≥ 2 it holds
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