Solution to Problem \# B-1064

Ángel Plaza \& Sergio Falcón
Department of Mathematics, Universidad de Las Palmas de Gran Canaria 35017-Las Palmas G.C. SPAIN,

B-1064 Proposed by N. Gauthier, Kingston, ON, Canada

For $a \neq 0$, let $f_{0}=0, f_{1}=1$, and $f_{n+2}=a f_{n+1}+f_{n}$ for $n \geq 0$. If n is a positive integer, find a closed-form expression for

$$
\sum_{k=0}^{n-1} f_{k}^{3}
$$

Solution. We shall prove the following closed-form expression:

$$
\begin{equation*}
\sum_{k=0}^{n-1} f_{k}^{3}=\frac{f_{3 n}+f_{3 n-3}+1}{f_{4}+f_{2}}-\frac{f_{n}^{3}+f_{n-1}^{3}}{a} \tag{1}
\end{equation*}
$$

Lemma: For $n \geq 0$ it holds

$$
\begin{equation*}
f_{n}^{3}+\frac{f_{n+1}^{3}-f_{n-1}^{3}}{a}=f_{3 n} . \tag{2}
\end{equation*}
$$

The closed-form expression follows easily from the Lemma. Note that summing up in the Lemma we obtain:

$$
\sum_{k=0}^{n-1} f_{k}^{3}+\frac{1}{a} \sum_{k=0}^{n-1}\left(f_{k+1}^{3}-f_{k-1}^{3}\right)=\sum_{k=0}^{n-1} f_{3 k}
$$

Using that the second sum is telescopic and the expression for the sum of numbers $f_{3 k}$ with indexes in an arithmetic sequence [2] it is readily obtained:

$$
\sum_{k=0}^{n-1} f_{k}^{3}+\frac{1}{a}\left(f_{n}^{3}+f_{n-1}^{3}-f_{0}^{3}-f_{-1}^{3}\right)=\frac{f_{3 n}+f_{3 n-3}-f_{3}}{f_{4}+f_{2}}
$$

Identity (1) follows since $f_{0}=0, f_{-1}=(-1)^{2} f_{1}=f_{1}=1$, and $\frac{1}{a}-\frac{f_{3}}{f_{4}+f_{2}}=\frac{1}{f_{4}+f_{2}}$.

Proof of the lemma: We follow here a combinatorial argument taken from Benjamin and Quinn [1, Identity 232, pp. 126-127] and adapt it for the case of distinguished squares.

It is well known that the numbers of this problem, f_{n}, count the number of tilings of an ($n-1$)-board with a-distinguished (or colored) squares and black dominoes [1]. For convenience, we will use the notation $F_{n}=f_{n+1}$. For a-distinguished squares we understand that each square may be labeled (or colored) in k different ways. Therefore, is this notation
the identity to be proved becomes

$$
\begin{equation*}
F_{n-1}^{3}+\frac{F_{n}^{3}-F_{n-2}^{3}}{a}=F_{3 n-1} \tag{3}
\end{equation*}
$$

We use the concepts of breakable tiling and unbreakable tiling [1]. It is said that a tiling of an n-board is breakable at cell p, if the tiling can be decomposed into two tilings, one covering cells 1 through p and the other covering cells $p+1$ through n. On the other hand, a tiling is said to be unbreakable at cell p if a domino occupies cells p and $p+1$. See Fig. 1.

Figure 1. An (n)-board is either breakable or unbreakable at cell p

For proving identity (3) we shall define two sets and a correspondence between them:
Set 1: The set of ordered triples (A, B, C), where A, B, and C are $(n-1)$-tilings or A, B, and C are n-tilings with at least one ending with a square. Discarding the triples of n-tilings that all end in a domino shows that this set has size $F_{n-1}^{3}+F_{n}^{3}-F_{n-2}^{3}$.

Set 2: The set of $(3 n-1)$-tilings. There are $F_{3 n-1}$ such tilings.
Correspondence: We basically to distinguish two different cases. If (A, B, C) is a triple of $(n-1)$-tilings, we generate a $(3 n-1)$-tiling that is unbreakable at cells $n-1$ and unbreakable at cell $(2 n-1)$ by appending B the C to A with an extra domino inserted between B and C. See Fig. 2.

Figure 2. Correspondence between ordered $(n-1)$ tilings (A, B, C) and ($3 n-1$)-tilings.

In other case, if (A, B, C) is a triple of n-tilings with at least one ending with a square. We proceed as follows. If A ends in a square, then we append B then C to A after removing the last square of A. This creates, for each a of such triples, one $(3 n-1)$-tiling that is
breakable at cell $n-1$ and $2 n-1$. If A ends in a domino and B ends in a square, then we append B, then C to A after removing the last square of B. This creates, for each a of such triples, one $(3 n-1)$-tiling that is unbreakable at cell $n-1$ and breakable at cell $2 n-1$. If A and B end with a domino and C ends with a square, then we do the same as before, bu tnow removing the last square of C. This gives us one, for each a of such triples, one $(3 n-1)$-tiling that is breakable at cell $n-1$ and unbreakable at cell $2 n-1$. The correspondence is illustrated in Fig. 3 taken also from [1]. Note that in the first case the correspondence is one to one while in the second case, which in fact consists in three sub-cases, the correspondence is a to one because an a-colored square is removed. This explains the division by a in Equation (3).

Figure 3. Correspondence between ordered n tilings (A, B, C) with at least one ending with a square and $(3 n-1)$-tilings.

References

[1] A. T. Benjamin, J. J. Quinn, Proofs That Really Count, The Art of Combinatorial Proof, MAA, 2003.
[2] S. Falcón, A. Plaza, On k-Fibonacci numbers of arithmetic indexes, Applied Mathematics and Computation, 208 (1) (2009) 180-185.

