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For a 6= 0, let f0 = 0, f1 = 1, andfn+2 = afn+1 + fn for n ≥ 0. If n is a positive
integer, find a closed-form expression for
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Solution. We shall prove the following closed-form expression:
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Lemma: Forn ≥ 0 it holds
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The closed-form expression follows easily from the Lemma. Note that summing up in the
Lemma we obtain:
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Using that the second sum is telescopic and the expression for the sum of numbersf3k with
indexes in an arithmetic sequence [2] it is readily obtained:
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Identity (1) follows sincef0 = 0, f
−1 = (−1)2f1 = f1 = 1, and
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Proof of the lemma: We follow here a combinatorial argument taken from Benjamin
and Quinn [1, Identity 232, pp. 126-127] and adapt it for the case of distinguished squares.

It is well known that the numbers of this problem,fn, count the number of tilings of an
(n − 1)-board witha-distinguished (or colored) squares and black dominoes [1]. For con-
venience, we will use the notationFn = fn+1. Fora-distinguished squares we understand
that each square may be labeled (or colored) ink different ways. Therefore, is this notation



2

the identity to be proved becomes
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We use the concepts ofbreakable tiling andunbreakable tiling [1]. It is said that a tiling
of ann-board isbreakable at cellp, if the tiling can be decomposed into two tilings, one
covering cells1 throughp and the other covering cellsp + 1 throughn. On the other hand,
a tiling is said to beunbreakable at cellp if a domino occupies cellsp andp+1. See Fig. 1.
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FIGURE 1. An (n)-board is either breakable or unbreakable at cellp

For proving identity (3) we shall define two sets and a correspondence between them:

Set 1: The set of ordered triples(A,B,C), whereA,B, andC are(n − 1)-tilings or
A,B, andC aren-tilings with at least one ending with a square. Discarding the triples of
n-tilings that all end in a domino shows that this set has sizeF 3

n−1 + F 3
n
− F 3

n−2.

Set 2: The set of(3n − 1)-tilings. There areF3n−1 such tilings.

Correspondence: We basically to distinguish two different cases. If(A,B,C) is a
triple of (n − 1)-tilings, we generate a(3n − 1)-tiling that is unbreakable at cellsn − 1
and unbreakable at cell(2n− 1) by appendingB theC to A with an extra domino inserted
betweenB andC. See Fig. 2.

A,B, C are (n-1) tilings
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FIGURE 2. Correspondence between ordered(n− 1) tilings (A,B,C) and

(3n − 1)-tilings.

In other case, if(A,B,C) is a triple ofn-tilings with at least one ending with a square.
We proceed as follows. IfA ends in a square, then we appendB thenC to A after removing
the last square ofA. This creates, for eacha of such triples, one(3n − 1)-tiling that is
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breakable at celln − 1 and2n − 1. If A ends in a domino andB ends in a square, then
we appendB, thenC to A after removing the last square ofB. This creates, for eacha
of such triples, one(3n − 1)-tiling that is unbreakable at celln − 1 and breakable at cell
2n − 1. If A andB end with a domino andC ends with a square, then we do the same
as before, bu tnow removing the last square ofC. This gives us one, for eacha of such
triples, one(3n − 1)-tiling that is breakable at celln − 1 and unbreakable at cell2n − 1.
The correspondence is illustrated in Fig. 3 taken also from [1]. Note that in the first case
the correspondence is one to one while in the second case, which in fact consists in three
sub-cases, the correspondence isa to one because ana-colored square is removed. This
explains the division bya in Equation (3). �
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FIGURE 3. Correspondence between orderedn tilings (A,B,C) with at

least one ending with a square and(3n − 1)-tilings.
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