Solution to Problem \# B-1065

Ángel Plaza and Sergio Falcón
Department of Mathematics, Universidad de Las Palmas de Gran Canaria
35017-Las Palmas G.C. SPAIN

B-1065 Proposed by Br. J. Mahon, Australia

The Pell numbers P_{n} satisfy $P_{n+2}=2 P_{n+1}+P_{n}, P_{0}=0, P_{1}=1$. Prove that

$$
\sum_{r=1}^{\infty} \frac{(-1)^{r-1} P_{6 r+3}}{P_{3 r}^{2} P_{3 r+3}^{2}}=\frac{1}{125}
$$

Solution. We consider the sequence of general term $Q_{m}=P_{3 m}$. The new sequence is again a generalized Fibonacci sequence (see for example [1]) verifying the recurrence relation $Q_{n+2}=14 Q_{n+1}+Q_{n}$ with initial values $Q_{0}=0$ and $Q_{1}=5$. The Binet's formula for sequence $\left\{Q_{n}\right\}$ is $Q_{n}=5 \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$, being α and β the roots of the characteristic polynomial. By the Binet's formula it is deduced the convolution product: $Q_{n+m}=\frac{Q_{n+1} Q_{m}+Q_{n} Q_{m-1}}{5}$. Note that $P_{6 r+3}=Q_{2 r+1}$, and using the convolution product for $n=r$ and $m=r+1$ it is readily obtained

$$
\begin{aligned}
\frac{P_{6 r+3}}{P_{3 r}^{2} P_{3 r+3}^{2}} & =\frac{Q_{2 r+1}}{Q_{r}^{2} Q_{r+1}^{2}}=\frac{Q_{r}^{2}+Q_{r+1}^{2}}{5 Q_{r}^{2} Q_{r+1}^{2}} \\
& =\frac{1}{5 Q_{r}^{2}}+\frac{1}{5 Q_{r+1}^{2}}
\end{aligned}
$$

Therefore,

$$
\sum_{r=1}^{\infty}(-1)^{r-1}\left(\frac{1}{5 Q_{r}^{2}}+\frac{1}{5 Q_{r+1}^{2}}\right)=\frac{1}{5 Q_{1}^{2}}=\frac{1}{125}
$$

REFERENCES

[1] S. Falcón, A. Plaza, On k-Fibonacci numbers of arithmetic indexes, Applied Mathematics and Computation, 208 (1) (2009) 180-185.

