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The Pell numbersPn satisfyPn+2 = 2Pn+1 + Pn, P0 = 0, P1 = 1. Prove that
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Solution. We consider the sequence of general termQm = P3m. The new sequence is again
a generalized Fibonacci sequence (see for example [1]) verifying the recurrence relation
Qn+2 = 14Qn+1 + Qn with initial valuesQ0 = 0 andQ1 = 5. The Binet’s formula for se-

quence{Qn} is Qn = 5
αn − βn

α − β
, beingα andβ the roots of the characteristic polynomial.

By the Binet’s formula it is deduced the convolution product:Qn+m = Qn+1Qm+QnQm−1

5
.

Note thatP6r+3 = Q2r+1, and using the convolution product forn = r andm = r + 1 it is
readily obtained
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Therefore,
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