PROBLEM OF THE WEEK. Problem No. 7 (Fall 2010 Series)

Let $n \geq 2$ and let $0<x_{i}<1, i=1,2, \ldots, n$. Show that $\prod_{i=1}^{n}\left(1-x_{i}\right)+\sum_{i=1}^{n} x_{i}>1$.

Solution by Angel Plaza, ULPGC, Spain

By induction. For $n=2: 0<x_{1}, x_{2}<1$, it is obtained
$\left(1-x_{1}\right)\left(1-x_{2}\right)+x_{1}+x_{2}=1-x_{1}-x_{2}+x_{1} x_{2}+x_{1}+x_{2}=1+x_{1} x_{2}>1$.
Let us suppose that the inequality holds for $0<x_{i}<1, i=1,2, \ldots, n-1$.
The inequality for n numbers follows immediately by writing

$$
\prod_{i=1}^{n}\left(1-x_{i}\right)+\sum_{i=1}^{n} x_{i}=1+\underbrace{\left(\prod_{i=1}^{n-1}\left(1-x_{i}\right)+\sum_{i=1}^{n-1} x_{i}-1\right)}_{>0} \underbrace{\left(1-x_{n}\right)}_{>0}+\underbrace{x_{n} \sum_{i=1}^{n-1} x_{i}>1}_{>0}
$$

