Totten-M5. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania.
Let $a \neq 1$ be a positive real number. Determine all pairs of positive integers (x, y) such that $\log _{a} x-\log _{a} y=\log _{a}(x-y)$.

Solution: (by Luis J. Blanco (student) and Angel Plaza, University of Las Palmas de Gran Canaria, 35017-Las Palmas G.C., Spain)

$$
\log _{a} x-\log _{a} y=\log _{a}(x-y) \Rightarrow \log _{a}\left(\frac{x}{y}\right)=\log _{a}(x-y), \text { and }
$$ since $\log _{a} x$ is an injective function, we obtain that $\frac{x}{y}=x-y$.

Therefore, x is an integer multiple of $x-y$, and $x-y>0$. Let us write $x=n y$ then $n y=y^{2}(n-1) \Rightarrow n=y(n-1)$, or, equivalently $y=1+\frac{1}{n-1} \in N$. That is $\frac{1}{n-1}$ is a positive integer, and this implies that $n=2$. Then $y=2$ and $x=4$.

