11343. Proposed by David Beckwith, Sag Harbor, NY.

Show that when n is a positive integer,

$$
\sum_{k \geq 0}\binom{n}{k}\binom{2 k}{k}=\sum_{k \geq 0}\binom{n}{2 k}\binom{2 k}{k} 3^{n-2 k}
$$

Solution: (by Ángel Plaza, ULPGC, 35017-Las Palmas G.C., Spain, e-mail: aplaza@dmat.ulpgc.es)

Since $1+\left(x+\frac{1}{x}\right)^{2}=3+x^{2}+\frac{1}{x^{2}}$, the result follows by considering the constant term in each term of the equation $\left(1+\left(x+\frac{1}{x}\right)^{2}\right)^{n}=$ $\left(3+\left(x^{2}+\frac{1}{x^{2}}\right)\right)^{n}:$

$$
\left(1+\left(x+\frac{1}{x}\right)^{2}\right)^{n}=\sum_{k \geq 0}\binom{n}{k}\left(\left(x+\frac{1}{x}\right)^{2}\right)^{k}=\sum_{k \geq 0}\binom{n}{k}\left(x+\frac{1}{x}\right)^{2 k}
$$

where the constant term is $\sum_{k \geq 0}\binom{n}{k}\binom{2 k}{k}$.
On the other hand,

$$
\left(3+\left(x^{2}+\frac{1}{x^{2}}\right)\right)^{n}=\sum_{k \geq 0}\binom{n}{k} 3^{n-k}\left(x^{2}+\frac{1}{x^{2}}\right)^{k}, \text { where the con- }
$$

stant term is $\sum_{k \geq 0}\binom{n}{2 k} 3^{n-2 k}\binom{2 k}{k}$.

