Proposed by Michael Poghosyan, Yerevan State University, Yerevan, Armenia.

Prove that for any positive integer, n,
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Solution: (by Angel Plaza and Sergio Falcon, University of Las
Palmas de Gran Canaria, 85017-Las Palmas G.C., Spain)

Note that the proposed identity may be written as
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Since:
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Equation (2) is equivalent to:
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By using the falling factorial powers of real x defined by 2% =
z(x—1)...(x —k+ 1), where 22 = 1 yields [1, Eq.(5.36)]:
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Hence, Equation (3) is equivalent to:
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and therefore:
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Note that ( f)g = 1 50 we have:
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Now we use (k — %)E = (%I)E(—l)k, to obtain:
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And the last equation follows from the Pfaff formula:
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where a1 +ao +b; +by =n — 1.

In our case, a; = ay = by = _71, and by :n~|—%.
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