SOLUTION TO AMM PROBLEM \# 11369

ÁNGEL PLAZA AND JOSÉ MIGUEL PACHECO

Proposed by Donald Knuth, Stanford University, Stanford, CA.
Problem. \#11369 Show that for all real t, and all $\alpha \geq 2$,

$$
e^{\alpha t}+e^{-\alpha t}-2 \leq\left(e^{t}+e^{-t}\right)^{\alpha}-2^{\alpha}
$$

Solution: It is clear that the equality holds for $t=0$ and any $\alpha \geq 2$, and also for any real t and $\alpha=2$. Let us suppose then that $t \neq 0$ and $\alpha>2$. Since $x=e^{t}>0$ in this case, the inequality may be written as

$$
\begin{equation*}
x^{\alpha}+x^{-\alpha}-2<\left(x+\frac{1}{x}\right)^{\alpha}-2^{\alpha} . \tag{1}
\end{equation*}
$$

Also, since $x \cdot x^{-1}=1$ it can be supposed that $x>1$.

Note that if $g(x)=x^{\alpha}+x^{-\alpha}$ and $f(x)=\left(x+\frac{1}{x}\right)^{\alpha}$, then Eq. (1) may be written as

$$
\begin{equation*}
g(x)-g(1)<f(x)-f(1), \tag{2}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\frac{g(x)-g(1)}{f(x)-f(1)}<1 \tag{3}
\end{equation*}
$$

Now, by the Lagrage Theorem, the Left-Hand Side of Eq. (3) is $\frac{g^{\prime}(c)}{f^{\prime}(c)}$, for some real c such that $1<c<x$.

Note that $\frac{g^{\prime}(c)}{f^{\prime}(c)}<1 \Leftrightarrow g^{\prime}(c)<f^{\prime}(c)$. That is, using x instead of c,

$$
\begin{gather*}
\alpha x^{\alpha-1}-\alpha \frac{1}{x^{\alpha+1}}<\alpha\left(x+\frac{1}{x}\right)^{\alpha-1}\left(1-\frac{1}{x^{2}}\right) \tag{4}\\
x^{\alpha-1}\left[1-\frac{1}{x^{2 \alpha}}\right]<x^{\alpha-1}\left(1+\frac{1}{x^{2}}\right)^{\alpha-1}\left(1-\frac{1}{x^{2}}\right)
\end{gather*}
$$

$\frac{1}{x^{2}}=y$ gives $0<y<1$ and Eq. (5) reads:

$$
\begin{equation*}
1-y^{\alpha}<(1+y)^{\alpha-1}(1-y)=(1+y)^{\alpha-1}-y(1+y)^{\alpha-1} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
1-(1+y)^{\alpha-1}<y^{\alpha}-y(1+y)^{\alpha-1}=y\left[y^{\alpha-1}-(1+y)^{\alpha-1}\right] \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\frac{(1+y)^{\alpha-1}-1}{(1+y)^{\alpha-1}-y^{\alpha-1}}>y \tag{8}
\end{equation*}
$$

Let us consider function $F(y)=y^{\alpha-1}$. F is strictly convex, since $F^{\prime \prime}(y)=(\alpha-1)(\alpha-$ 2) $y^{\alpha-3}>0$, for $y>0$ and $\alpha>2$. If denote by $\Delta_{F}(x, y)=\frac{F(y)-F(x)}{y-x}$ the divided difference of function F, then Eq. (8) may be understood as:

$$
\begin{equation*}
y \frac{\Delta_{F}(1,1+y)}{\Delta_{F}(y, 1+y)}>y \tag{9}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\frac{\Delta_{F}(1,1+y)}{\Delta_{F}(y, 1+y)}>1 \Leftrightarrow \Delta_{F}(1,1+y)>\Delta_{F}(y, 1+y) \tag{10}
\end{equation*}
$$

Now, we use the following lemma [1]:
Lemma. A function $F:(a, b) \rightarrow R$ is convex (strictly convex) if and only if its divided difference $\Delta_{F}(x, y)$ is increasing (strictly increasing) in both variables.

Inequality (10) may be illustrated by the following figure, considering that $\Delta_{F}(1,1+y)$ is the slope of the line passing through points B and C, while $\Delta_{F}(y, 1+y)$ is the slope of the line passing through points A and C :

Note, also, that for the case $\alpha=2$, function $y=x^{\alpha-1}$ into the previous figure is precisely $y=x$ and in this case we have the equality.

REFERENCES

1. Z. Kadelbur, D. Duckić, M. Lukić, I. Matić, Inequalities of Karamata, Schur and Muirhead, and some applications, The Teaching of Mathematics, vol. VIII (1) (2005), 31-45.
