SOLUTION TO AMM PROBLEM # 11369

ÁNGEL PLAZA AND JOSÉ MIGUEL PACHECO

Proposed by DONALD KNUTH, Stanford University, Stanford, CA.

Problem . # 11369 Show that for all real t, and all $\alpha \geq 2$,

$$e^{\alpha t} + e^{-\alpha t} - 2 \le (e^t + e^{-t})^{\alpha} - 2^{\alpha}.$$

Solution: It is clear that the equality holds for t = 0 and any $\alpha \ge 2$, and also for any real t and $\alpha = 2$. Let us suppose then that $t \ne 0$ and $\alpha > 2$. Since $x = e^t > 0$ in this case, the inequality may be written as

(1)
$$x^{\alpha} + x^{-\alpha} - 2 < \left(x + \frac{1}{x}\right)^{\alpha} - 2^{\alpha}.$$

Also, since $x \cdot x^{-1} = 1$ it can be supposed that x > 1.

Note that if
$$g(x) = x^{\alpha} + x^{-\alpha}$$
 and $f(x) = \left(x + \frac{1}{x}\right)^{\alpha}$, then Eq. (1) may be written as
(2) $g(x) - g(1) < f(x) - f(1)$,

or, equivalently,

(3)
$$\frac{g(x) - g(1)}{f(x) - f(1)} < 1.$$

Now, by the Lagrage Theorem, the Left-Hand Side of Eq. (3) is $\frac{g'(c)}{f'(c)}$, for some real c such that 1 < c < x.

Note that
$$\frac{g'(c)}{f'(c)} < 1 \quad \Leftrightarrow g'(c) < f'(c)$$
. That is, using x instead of c ,
(4) $\alpha x^{\alpha-1} - \alpha \frac{1}{x^{\alpha+1}} < \alpha \left(x + \frac{1}{x}\right)^{\alpha-1} \left(1 - \frac{1}{x^2}\right)$
(5) $x^{\alpha-1} \left[1 - \frac{1}{x^{2\alpha}}\right] < x^{\alpha-1} \left(1 + \frac{1}{x^2}\right)^{\alpha-1} \left(1 - \frac{1}{x^2}\right)$

$$\frac{1}{x^{2}} = y \text{ gives } 0 < y < 1 \text{ and Eq. (5) reads:}$$
(6) $1 - y^{\alpha} < (1+y)^{\alpha-1}(1-y) = (1+y)^{\alpha-1} - y(1+y)^{\alpha-1}$
(7) $1 - (1+y)^{\alpha-1} < y^{\alpha} - y(1+y)^{\alpha-1} = y \left[y^{\alpha-1} - (1+y)^{\alpha-1} \right]$

Date: October 31, 2008.

(8)
$$\frac{(1+y)^{\alpha-1}-1}{(1+y)^{\alpha-1}-y^{\alpha-1}} > y$$

Let us consider function $F(y) = y^{\alpha-1}$. *F* is strictly convex, since $F''(y) = (\alpha - 1)(\alpha - 2)y^{\alpha-3} > 0$, for y > 0 and $\alpha > 2$. If denote by $\Delta_F(x, y) = \frac{F(y) - F(x)}{y - x}$ the divided difference of function *F*, then Eq. (8) may be understood as:

(9)
$$y\frac{\Delta_F(1,1+y)}{\Delta_F(y,1+y)} > y$$

which is equivalent to

(10)
$$\frac{\Delta_F(1,1+y)}{\Delta_F(y,1+y)} > 1 \iff \Delta_F(1,1+y) > \Delta_F(y,1+y)$$

Now, we use the following lemma [1]:

LEMMA. A function $F : (a, b) \to R$ is convex (strictly convex) if and only if its divided difference $\Delta_F(x, y)$ is increasing (strictly increasing) in both variables.

Inequality (10) may be illustrated by the following figure, considering that $\Delta_F(1, 1+y)$ is the slope of the line passing through points B and C, while $\Delta_F(y, 1+y)$ is the slope of the line passing through points A and C:

Note, also, that for the case $\alpha = 2$, function $y = x^{\alpha-1}$ into the previous figure is precisely y = x and in this case we have the equality. \Box

REFERENCES

1. Z. Kadelbur, D. Duckić, M. Lukić, I. Matić, *Inequalities of Karamata, Schur and Muirhead, and some applications*, The Teaching of Mathematics, vol. VIII (1) (2005), 31–45.