Problem \# 11381. Proposed by Jesús Guillera, Zaragoza, Spain, and Jonathan Sondow, New York, NY.

Show that if x is a positive real number, then

$$
\begin{equation*}
e^{x}=\prod_{n=1}^{\infty}\left(\prod_{k=1}^{n}(k x+1)^{(-1)^{k+1}\binom{n}{k}}\right)^{1 / n} \tag{1}
\end{equation*}
$$

Solution: (by Ángel Plaza, and Sergio Falcón, University of Las Palmas de Gran Canaria, 35017-Las Palmas G.C., Spain)

The identity is proved in the paper:
J. Guillera and J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, The Ramanujan J., Vol. 16, No. 3 (2008), 247-270.

The proof is based on the following result (Theorem 5.2.), also given in the same reference:

Let us recall the formulas for the Euler beta function:

$$
B(u, v)=\int_{0}^{1} x^{u-1}(1-x)^{v-1} d x=\frac{\Gamma(u) \Gamma(v)}{\Gamma(u+v)}
$$

Theorem 5.2. For $j=1,2, \ldots$,

$$
\begin{equation*}
B(u, j)=\sum_{n=j}^{\infty} \frac{1}{n-j+1} \sum_{k=0}^{n}(-1)^{k+1}\binom{n}{k} \ln (u+k) \tag{2}
\end{equation*}
$$

Now the proof of Eq. (1) follows as:

The formula (1) holds when $x=0$. If $x>0$, then since u, unlike j, is not restricted to integer values in Theorem 5.2, we may take $u=1 / x$. Since $\sum_{k=0}^{n}(-1)^{k+1}\binom{n}{k}=0$, we may then replace
$\ln \left(\frac{1}{2}+k\right)$ with $\ln (k x+1)$ in Eq. (1). Setting $j=1$ and using $B(1 / x, 1)=x$, we exponentiate Eq. (1) and obtain the result.

