Problem \# 11402. Proposed by Catalin Barboianu, Infarom Publishing,
Craiova, Romania.
Let $f:[0,1] \rightarrow[0, \infty)$ be a continuos function such that $f(0)=f(1)=0$ and $f(x)>0$ for $0<x<1$. Show that there exists a square with two vertices in the interval $(0,1)$ on the x-axis and the other two vertices on the graph of f.

Solution: (by Ángel Plaza, and Sergio Falcón, University of Las Palmas de Gran Canaria, 35017-Las Palmas G.C., Spain)

Extend f continuously to $[0, \infty)$ by defining $f(x)=0$ for $x>1$. Consider the functions $g(x)=x+f(x)$ and $h(x)=f(x)-f(g(x))=$ $f(x)-f(x+f(x))$ both also defined and continuous on $[0, \infty)$. We seek a point $c \in(0,1)$ with $h(c)=0$, for then the vertices $(c, 0)$, $(c+f(c), 0),(c+f(c), f(c+f(c)))$, and $(c, f(c))$ form the desired square, with all sides equal to $f(c)$. See the figure.

Since f is continuous on $[0,1]$ it takes its (positive) maximum there at some point $M \in(0,1)$. Since M is also a maximum of the extended f we have $f(M)>f(M+f(M))$, so $h(M)>0$. On the other hand, since $g(0)=0, g(1)=1$ and g is continuous, the connected set $g([0,1])$ contains (at least) the interval $[0,1]$, so there is an m with $g(m)=M$, that is $m+f(m)=M$, so $m=$ $M-f(m)<M$. Then $f(m)<f(M)=f(g(m))$, so $h(m)<0$. By the Intermediate Value Theorem, $h(c)=0$ for some $0<m<c<$ $M<1$, and the proof is complete.

