Solution to AMM Problem \# 11423

Ángel Plaza
Department of Mathematics, Universidad de Las Palmas de Gran Canaria 35017-Las Palmas G.C. SPAIN,

Problem\# 11423 Proposed by Gregory Minton, D. E. Shaw Research, LLC, New York, $N Y$. Show that if n and m are positive integers with $n \geq m$ and $n-m$ even, then $\int_{x=0}^{\infty} x^{-m} \sin ^{n} x d x$ is a rational multiple of π.

Solution. $\int_{0}^{\infty} f(x) d x$ is defined as the limit $\lim _{R \rightarrow \infty} \int_{0}^{R} f(x) d x$, provided that this limit exists. When the function $f(x)$ is even, as in our case, one has $\int_{0}^{R} f(x) d x=\frac{1}{2} \int_{-R}^{R} f(x) d x$.

In our case, $\operatorname{since} \sin x=\Im\left(e^{i z}\right)$, and $\cos n z+i \sin n z=\left(e^{i z}\right)^{n}$, then $\sin ^{n} z$ may be written as the real part if n is even (or imaginary part if n is odd) of a polynomial on $e^{i z}$ of degreee n with rational coefficients. For our purposes, we consider here an integral of the form $\lim _{R \rightarrow \infty}\left(\int_{R}^{R} \frac{e^{i n z}}{z^{m}} d z\right)$.

Let us consider the complex integral $I_{R}=\int_{C_{R}} \frac{e^{i n z}}{z^{m}} d z$, where $C_{R}=[-R,-\epsilon] \cup \delta_{\epsilon} \cup$ $[\epsilon, R] \cup \delta_{R}$. That is, C_{R} is a contour consisting on two line segments along the real axis, between $-R$ and ϵ, and between ϵ and R, and two semicircles centered at the origin: $\delta_{\epsilon}=$ $\left\{z=\epsilon e^{i t}, t \in[\pi, 0]\right\}$, and $\delta_{R}=\left\{z=R e^{i t}, t \in[0, \pi]\right\}$.

By the Residue Theorem, $I_{R}=0$ since there is no interior pole to C_{R} of function $\frac{e^{i n z}}{z^{m}}$. On the other hand, for $\epsilon \rightarrow 0$, and $R \rightarrow \infty$ we have $\int_{[-R,-\epsilon] \cup[\epsilon, R]]} \frac{e^{i n z}}{z^{m}} d z \longrightarrow$ $\lim _{R \rightarrow \infty}\left(\int_{R}^{R} \frac{e^{i n x}}{x^{m}} d x\right), \int_{\delta_{R}} \frac{e^{i n z}}{z^{m}} d z \longrightarrow 0$, and $\int_{\delta_{\epsilon}} \frac{e^{i n z}}{z^{m}} d z \longrightarrow-\pi i \operatorname{Res}\left(\frac{e^{i n z}}{z^{m}}, 0\right)$.

$$
\text { Note that } \operatorname{Res}\left(\frac{e^{i n z}}{z^{m}}, 0\right)=\lim _{z \rightarrow 0} \frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left(z^{m} \frac{e^{i n z}}{z^{m}}\right)=\frac{(i n)^{m-1}}{(m-1)!}
$$

Therefore, $\lim _{R \rightarrow \infty}\left(\int_{R}^{R} \frac{e^{i n x}}{x^{m}} d x\right)=\pi \frac{i^{m} n^{m-1}}{(m-1)!}$
and the result of the proposed integral must be a rational multiple of π.

