Solution to AMM Problem # 11423

Ángel Plaza Department of Mathematics, Universidad de Las Palmas de Gran Canaria 35017–Las Palmas G.C. SPAIN,

Problem# 11423 Proposed by Gregory Minton, D. E. Shaw Research, LLC, New York, NY. Show that if n and m are positive integers with $n \ge m$ and n - m even, then $\int_{x=0}^{\infty} x^{-m} \sin^n x \, dx$ is a rational multiple of π .

Solution. $\int_0^\infty f(x) dx$ is defined as the limit $\lim_{R \to \infty} \int_0^R f(x) dx$, provided that this limit exists. When the function f(x) is even, as in our case, one has $\int_0^R f(x) dx = \frac{1}{2} \int_{-R}^R f(x) dx$.

In our case, since $\sin x = \Im (e^{iz})$, and $\cos nz + i \sin nz = (e^{iz})^n$, then $\sin^n z$ may be written as the real part if n is even (or imaginary part if n is odd) of a polynomial on e^{iz} of degreee n with rational coefficients. For our purposes, we consider here an integral of the form $\lim_{R \to \infty} \left(\int_R^R \frac{e^{inz}}{z^m} dz \right)$.

Let us consider the complex integral $I_R = \int_{C_R} \frac{e^{inz}}{z^m} dz$, where $C_R = [-R, -\epsilon] \cup \delta_{\epsilon} \cup [\epsilon, R] \cup \delta_R$. That is, C_R is a contour consisting on two line segments along the real axis, between -R and ϵ , and between ϵ and R, and two semicircles centered at the origin: $\delta_{\epsilon} = \{z = \epsilon e^{it}, t \in [\pi, 0]\}$, and $\delta_R = \{z = R e^{it}, t \in [0, \pi]\}$.

By the Residue Theorem, $I_R = 0$ since there is no interior pole to C_R of function $\frac{e^{inz}}{z^m}$. On the other hand, for $\epsilon \to 0$, and $R \to \infty$ we have $\int_{[-R,-\epsilon]\cup[\epsilon,R]} \frac{e^{inz}}{z^m} dz \longrightarrow \lim_{R\to\infty} \left(\int_R^R \frac{e^{inx}}{x^m} dx \right), \int_{\delta_R} \frac{e^{inz}}{z^m} dz \longrightarrow 0$, and $\int_{\delta_\epsilon} \frac{e^{inz}}{z^m} dz \longrightarrow -\pi i \operatorname{Res}\left(\frac{e^{inz}}{z^m}, 0\right).$

Note that $\operatorname{Res}\left(\frac{e^{inz}}{z^m}, 0\right) = \lim_{z \to 0} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \left(z^m \frac{e^{inz}}{z^m}\right) = \frac{(in)^{m-1}}{(m-1)!}.$

Therefore,
$$\lim_{R \to \infty} \left(\int_{R}^{R} \frac{e^{inx}}{x^{m}} dx \right) = \pi \frac{i^{m} n^{m-1}}{(m-1)!}$$

and the result of the proposed integral must be a rational multiple of π .

E-mail address: aplaza@dmat.ulpgc.es