Problem 11288 (Proposed by Christopher Hillar, Texas A\&M University, College Station, TX and Troels Windfeldt, University of Copenhagen, Copenhagen, Denmark)

\author{

- Solution by Ángel Plaza \\ ULPGC, 35017-Las Palmas G.C., Spain \\ aplaza@dmat.ulpgc.es
}

Let n be a positive integer, and let $U=\{1, \ldots, 2 n\}$. For a set $S \subseteq U$ and a positive integer d, let h_{S}^{d} be the sum of all monomials of degree d in the indeterminants $\left\{X_{i}: X_{i} \in S\right\}$. Let τ be the set of all n-elements subsets of U with the property that for any odd element k of the set, $k+1$ is not a member. For S in τ, let $o(S)$ denote the number of odd elements of S. Show that for every positive integer d,

$$
h_{U}^{d} \prod_{i=1}^{n}\left(X_{2 i-1}-X_{2 i}\right)=\sum_{S \in \tau}(-1)^{o(S)} h_{U \backslash S}^{d+n}
$$

Solution:

If M is a monomial and P a polynomial such that M appears in P, we will write $M \in P$.

Let \mathcal{R} denote the set of the monomials in the right-had side (RHS) of previous equation with their respective sign, and let \mathcal{L} de set of the monomials in the left-hand side (LHS) of the same equation, again with their respective sign. Our goal is to show that $\mathcal{R}=\mathcal{L}$ if possible. In fact, we shall show that after cancellation in each side of the equation, both sets are the same.

For M in \mathcal{R}, there exist $M_{d} \in h_{U}^{d}$, and $M_{n} \in \prod_{i=1}^{n}\left(X_{2 i-1}-X_{2 i}\right)$ such that $M=M_{d} \cdot M_{n}$. Two possibilities are presented now.
(1) If the composition $M=M_{d} \cdot M_{n}$ is unique, then monomial $M_{n} \in$ $\prod_{i=1}^{n}\left(X_{2 i-1}-X_{2 i}\right)$ is determined by the elements that we will denote as $\hat{X}_{i} \in$ $\left\{X_{2 i-1}, X_{2 i}\right\}$ for $i=1, \ldots, n$. Let S^{*} be the set of the n indeterminants appearing in M_{n}. That is, $S^{*}=\left\{\hat{X}_{i}: i=1, \ldots, n\right\}$.

In addition, if the sign of M is denoted by $\operatorname{sign}(M)$, then $\operatorname{sign}(M)=$ $(-1)^{e\left(S^{*}\right)}$, where $e\left(S^{*}\right)$ denote the number of even elements of S^{*}.

Notice that S^{*} verifies that if $X_{2 i} \in S^{*}$, then $X_{2 i-1} \notin S^{*}$. Therefore, if $S=U \backslash S^{*}$, then $o(S)=e\left(S^{*}\right)$, and if $X_{2 i-1} \in S$, then $X_{2 i} \notin S$. This means that $S \in \tau$.

Since in this case, the composition $M=M_{d} \cdot M_{n}$ is unique, then all the indeterminants of M_{d} are in M_{n}, since otherwise M_{n} would not be unique. Therefore, $M \in(-1)^{o(S)} h_{U \backslash S}^{d+n}$. So $M \in \mathcal{L}$.
(2) Let us suppose now that the composition $M=M_{d} \cdot M_{n}$ is not unique. This implies that for some pair $\left\{X_{2 i-1}, X_{2 i}\right\}$ both indeterminants appear in M. Let j be in $\{1, \ldots, n\}$ such that $X_{2 j-1}, X_{2 j} \in M$ and let us denote by $M_{n_{o}}$ the monomial of degree n in $\prod_{i=1}^{n}\left(X_{2 i-1}-X_{2 i}\right)$ in which appears $X_{2 j-1}$, and let us denote by $M_{n_{e}}$ the monomial of degree n in $\prod_{i=1}^{n}\left(X_{2 i-1}-X_{2 i}\right)$ such that $X_{2 j}$ is in there. Note that then $\operatorname{sig}\left(M_{n_{o}}\right)=-\operatorname{sig}\left(M_{n_{e}}\right)$, and therefore, for each M in \mathcal{R} with no unique composition $M=M_{d} \cdot M_{n}$, there exists other monomial M^{*} in \mathcal{R} with opposite sign, so they cancell each other.

This shows that after cancellation in (RHS) $\mathcal{R} \subset \mathcal{L}$.

It should be shown now that, after cancellation in (LHS), $\mathcal{L} \subset \mathcal{R}$. To this end, consider $S \in \tau$ and let $S^{*}=U \backslash S$. For each $M \in(-1)^{o(S)} h_{U \backslash S}^{d+n}=$ $(-1)^{e\left(S^{*}\right)} h_{S^{*}}^{d+n}$, there are two possibilities:
(1) If there are n indeterminants in M, then $M \in \mathcal{R}$.
(2) In other case, let us suppose for instance that for the same $j \in\{1, \ldots, n\}$, $X_{2 j-1} \notin M$, and $X_{2 j} \notin M$. Since either $X_{2 j-1}$, or $X_{2 j}$ belongs to S, there exists M^{*} in \mathcal{L} such that $\operatorname{sign}\left(M^{*}\right)=-\operatorname{sign}(M)$, and therefore they cancell each other. M^{*} is related with M by simple changing $X_{2 j-1}$ by $X_{2 j}$ in S to get the corresponding subset S^{*}. Explicitely we set $S^{*}=S \backslash X_{2 j} \cup X_{2 j-1}$, if $X_{2 j} \in S$, and $S^{*}=S \backslash X_{2 j-1} \cup X_{2 j}$, if $X_{2 j-1} \in S$.

This proves that after cancellation in (LHS), $\mathcal{L} \subset \mathcal{R}$.

