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Let n be a positive integer, and let U = {1, . . . , 2n}. For a set S ⊆ U and

a positive integer d, let hd
S be the sum of all monomials of degree d in the

indeterminants {Xi : Xi ∈ S}. Let τ be the set of all n-elements subsets of U

with the property that for any odd element k of the set, k + 1 is not a member.

For S in τ , let o(S) denote the number of odd elements of S. Show that for

every positive integer d,

hd
U

n∏

i=1

(X2i−1 − X2i) =
∑

S∈τ

(−1)o(S)hd+n
U\S

Solution:

If M is a monomial and P a polynomial such that M appears in P , we will

write M ∈ P .

Let R denote the set of the monomials in the right-had side (RHS) of previous

equation with their respective sign, and let L de set of the monomials in the

left-hand side (LHS) of the same equation, again with their respective sign.

Our goal is to show that R = L if possible. In fact, we shall show that after

cancellation in each side of the equation, both sets are the same.

For M in R, there exist Md ∈ hd
U , and Mn ∈

n∏

i=1

(X2i−1 − X2i) such that

M = Md · Mn. Two possibilities are presented now.

(1) If the composition M = Md · Mn is unique, then monomial Mn ∈
n∏

i=1

(X2i−1 − X2i) is determined by the elements that we will denote as X̂i ∈

{X2i−1,X2i} for i = 1, . . . , n. Let S∗ be the set of the n indeterminants appear-

ing in Mn. That is, S∗ = {X̂i : i = 1, . . . , n}.

In addition, if the sign of M is denoted by sign(M), then sign(M) =

(−1)e(S∗), where e(S∗) denote the number of even elements of S∗.
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Notice that S∗ verifies that if X2i ∈ S∗, then X2i−1 /∈ S∗. Therefore, if

S = U \ S∗, then o(S) = e(S∗), and if X2i−1 ∈ S, then X2i /∈ S. This means

that S ∈ τ .

Since in this case, the composition M = Md · Mn is unique, then all the

indeterminants of Md are in Mn, since otherwise Mn would not be unique.

Therefore, M ∈ (−1)o(S)hd+n
U\S

. So M ∈ L.

(2) Let us suppose now that the composition M = Md · Mn is not unique.

This implies that for some pair {X2i−1,X2i} both indeterminants appear in M .

Let j be in {1, . . . , n} such that X2j−1,X2j ∈ M and let us denote by Mno
the

monomial of degree n in

n∏

i=1

(X2i−1 − X2i) in which appears X2j−1, and let us

denote by Mne
the monomial of degree n in

n∏

i=1

(X2i−1 − X2i) such that X2j is

in there. Note that then sig(Mno
) = −sig(Mne

), and therefore, for each M in

R with no unique composition M = Md · Mn, there exists other monomial M∗

in R with opposite sign, so they cancell each other.

This shows that after cancellation in (RHS) R ⊂ L .

It should be shown now that, after cancellation in (LHS), L ⊂ R. To this

end, consider S ∈ τ and let S∗ = U \ S. For each M ∈ (−1)o(S)hd+n
U\S

=

(−1)e(S∗)hd+n
S∗ , there are two possibilities:

(1) If there are n indeterminants in M , then M ∈ R.

(2) In other case, let us suppose for instance that for the same j ∈ {1, . . . , n},

X2j−1 /∈ M , and X2j /∈ M . Since either X2j−1, or X2j belongs to S, there

exists M∗ in L such that sign(M∗) = −sign(M), and therefore they cancell

each other. M∗ is related with M by simple changing X2j−1 by X2j in S to

get the corresponding subset S∗. Explicitely we set S∗ = S \ X2j ∪ X2j−1, if

X2j ∈ S, and S∗ = S \ X2j−1 ∪ X2j , if X2j−1 ∈ S.

This proves that after cancellation in (LHS), L ⊂ R.
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