Problem 11288 (Proposed by Christopher Hillar, Texas A&M University, College Station, TX and Troels Windfeldt, University of Copenhagen, Copenhagen, Denmark)

—— Solution by ÁNGEL PLAZA ULPGC, 35017-LAS PALMAS G.C., SPAIN aplaza@dmat.ulpgc.es

Let n be a positive integer, and let $U = \{1, \ldots, 2n\}$. For a set $S \subseteq U$ and a positive integer d, let h_S^d be the sum of all monomials of degree d in the indeterminants $\{X_i : X_i \in S\}$. Let τ be the set of all n-elements subsets of U with the property that for any odd element k of the set, k+1 is not a member. For S in τ , let o(S) denote the number of odd elements of S. Show that for every positive integer d,

$$h_U^d \prod_{i=1}^n (X_{2i-1} - X_{2i}) = \sum_{S \in \tau} (-1)^{o(S)} h_{U \setminus S}^{d+n}$$

Solution:

If M is a monomial and P a polynomial such that M appears in P, we will write $M \in P$.

Let \mathcal{R} denote the set of the monomials in the right-had side (RHS) of previous equation with their respective sign, and let \mathcal{L} de set of the monomials in the left-hand side (LHS) of the same equation, again with their respective sign. Our goal is to show that $\mathcal{R} = \mathcal{L}$ if possible. In fact, we shall show that after cancellation in each side of the equation, both sets are the same.

For M in \mathcal{R} , there exist $M_d \in h_U^d$, and $M_n \in \prod_{i=1}^n (X_{2i-1} - X_{2i})$ such that $M = M_d \cdot M_n$. Two possibilities are presented now.

(1) If the composition $M=M_d\cdot M_n$ is unique, then monomial $M_n\in\prod_{i=1}^n (X_{2i-1}-X_{2i})$ is determined by the elements that we will denote as $\hat{X}_i\in\{X_{2i-1},X_{2i}\}$ for $i=1,\ldots,n$. Let S^* be the set of the n indeterminants appearing in M_n . That is, $S^*=\{\hat{X}_i:i=1,\ldots,n\}$.

In addition, if the sign of M is denoted by sign(M), then $sign(M) = (-1)^{e(S^*)}$, where $e(S^*)$ denote the number of even elements of S^* .

Notice that S^* verifies that if $X_{2i} \in S^*$, then $X_{2i-1} \notin S^*$. Therefore, if $S = U \setminus S^*$, then $o(S) = e(S^*)$, and if $X_{2i-1} \in S$, then $X_{2i} \notin S$. This means that $S \in \tau$.

Since in this case, the composition $M = M_d \cdot M_n$ is unique, then all the indeterminants of M_d are in M_n , since otherwise M_n would not be unique. Therefore, $M \in (-1)^{o(S)} h_{U \setminus S}^{d+n}$. So $M \in \mathcal{L}$.

(2) Let us suppose now that the composition $M=M_d\cdot M_n$ is not unique. This implies that for some pair $\{X_{2i-1},X_{2i}\}$ both indeterminants appear in M. Let j be in $\{1,\ldots,n\}$ such that $X_{2j-1},X_{2j}\in M$ and let us denote by M_{n_o} the monomial of degree n in $\prod_{i=1}^n (X_{2i-1}-X_{2i})$ in which appears X_{2j-1} , and let us

denote by M_{n_e} the monomial of degree n in $\prod_{i=1}^{n} (X_{2i-1} - X_{2i})$ such that X_{2j} is in there. Note that then $sig(M_{n_o}) = -sig(M_{n_e})$, and therefore, for each M in \mathcal{R} with no unique composition $M = M_d \cdot M_n$, there exists other monomial M^* in \mathcal{R} with opposite sign, so they cancell each other.

This shows that after cancellation in (RHS) $\mathcal{R} \subset \mathcal{L}$.

It should be shown now that, after cancellation in (LHS), $\mathcal{L} \subset \mathcal{R}$. To this end, consider $S \in \tau$ and let $S^* = U \setminus S$. For each $M \in (-1)^{o(S)} h_{U \setminus S}^{d+n} = (-1)^{e(S^*)} h_{S^*}^{d+n}$, there are two possibilities:

- (1) If there are n indeterminants in M, then $M \in \mathcal{R}$.
- (2) In other case, let us suppose for instance that for the same $j \in \{1, \ldots, n\}$, $X_{2j-1} \notin M$, and $X_{2j} \notin M$. Since either X_{2j-1} , or X_{2j} belongs to S, there exists M^* in \mathcal{L} such that $sign(M^*) = -sign(M)$, and therefore they cancell each other. M^* is related with M by simple changing X_{2j-1} by X_{2j} in S to get the corresponding subset S^* . Explicitly we set $S^* = S \setminus X_{2j} \cup X_{2j-1}$, if $X_{2j} \in S$, and $S^* = S \setminus X_{2j-1} \cup X_{2j}$, if $X_{2j-1} \in S$.

This proves that after cancellation in (LHS), $\mathcal{L} \subset \mathcal{R}$.