Problem 11307 (also problem 11292)(Proposed by David Callan, University of Wisconsin, Madison, WI)

Solution by Ángel Plaza \& Sergio Falcón Universidad de Las Palmas de Gran Canaria, 35017-Las Palmas G.C., Spain aplaza@dmat.ulpgc.es, sfalcon@dma.ulpgc.es

Show that if p is a prime and $p \geq 5$, then p^{2} divides $\sum_{k=1}^{p^{2}-1}\binom{2 k}{k}$.

Solution:

First note that the conclusion of the problem may be written as a congruence as follows:
$\sum_{k=1}^{p^{2}-1}\binom{2 k}{k} \equiv 0\left(\bmod p^{2}\right)$, or, equivalently as $\sum_{k=0}^{p^{2}-1}\binom{2 k}{k} \equiv 1\left(\bmod p^{2}\right)$.

In 2006 Pan ans Sum [1, Theorem 1.2] showed that

$$
\begin{equation*}
\sum_{k=0}^{p-1}\binom{2 k}{k+d} \equiv\left(\frac{p-d}{3}\right)(\bmod p) \tag{1}
\end{equation*}
$$

where the Legendre symbol $\left(\frac{a}{3}\right) \in\{0, \pm 1\}$ satisfies $a \equiv\left(\frac{a}{3}\right)(\bmod 3)$
Note that equation (1), for $d=0$ results

$$
\begin{equation*}
\sum_{k=0}^{p-1}\binom{2 k}{k} \equiv\left(\frac{p}{3}\right) \quad(\bmod p) \tag{2}
\end{equation*}
$$

This result is used by Sun and Tauraso [2] to prove amongst other congruencies, the following [2, Theorem 1.2, Equation (1.8)]

$$
\begin{equation*}
\sum_{k=0}^{p^{a}-1}\binom{2 k}{k+d} \equiv\left(\frac{p^{a}-d}{3}\right)-p[p=3]\left(\frac{d}{3}\right)+2 p^{a} S_{d}\left(\bmod p^{2}\right) \tag{3}
\end{equation*}
$$

where p is a prime, $a \in Z^{+}=\{1,2,3, \ldots\}$, and $d \in\{0,1,2,3, \ldots\}$. Also [$p=$ $3]=1$ if $p=3$ and $[p=3]=0$ in other case. S_{d} is a rational p-adic integer given by

$$
S_{d}:=\sum_{0<k<d} \frac{(-1)^{k-1}}{k}\left(\frac{d-k}{3}\right)
$$

Note, that is our case, $S_{d}=0, p$ is a prime with $p \geq 5, d=0$, and $a=2$, and therefore Equation 3 gives

$$
\begin{equation*}
\sum_{k=0}^{p^{2}-1}\binom{2 k}{k} \equiv\left(\frac{p^{2}}{3}\right)\left(\bmod p^{2}\right) \tag{4}
\end{equation*}
$$

but, $\left(\frac{p^{2}}{3}\right)=1$ and the problem is done.

References

[1] H. Pan and Z.W. Sun, A combinatorial identity with application to Catalan numbers, Discrete Math. 306 (2006), 1921-1940.
[2] Z.W. Sun and R. Tauraso, Congruences involving Catalan numbers, arXiv:0709.1665, (24/09/2007).

