Problem 11333 (Proposed by Pablo Ferndndez Refolio, Universidad Auténoma
de Madrid, Madrid, Spain)

Solution by Angel Plaza, Universidad de Las Palmas de Gran Canaria,

35017-Las Palmas G.C., Spain. aplaza@dmat.ulpgc.es.
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Solution:

Fix an integer n > 2 and define for integer ¢ > 2,
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and so the proposed product is equal to e, where S = lim S(n).
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with ¢(7) polynomial functions in 1.

We claim
1 if i =2,
2 for 3 <i<n,
ci)=¢ =2m®> - -2 ifi=n+1, (1)
2n? +5n+1 ifi=n+2,
0 for i > n + 2.




The proof of (1) is straightforward. For example for 3 < i < n the contribu-
tion to ¢(i) from s(i—1), s(i), and s(i+1) respectively, is 2 ((i — 1)? — 1) +i—1,
—4(i* = 1), and 2 ((i + 1)? — 1) — (i + 1) which sums to 2 as required. Proofs of
the other cases of (1) are treated similarly.

It follows from (1) that
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To evaluate (3) as n — oo we use the following formulae:
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The second equation in (4) follows by taking logarithms and using Taylor’s
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formula:
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proving the second formula in (3).
The third equation in (4) follows from the fact:
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Substituting the limits of (4) into (2) and performing some straightforward

cancellations shows
S= lim S(n)=Ilnn

n—oo

from where the proposed product is obtained.



