Problem 11333 (Proposed by Pablo Fernández Refolio, Universidad Autónoma de Madrid, Madrid, Spain)

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, 35017-Las Palmas G.C., Spain. aplaza@dmat.ulpgc.es.

Show that

$$
\prod_{n=2}^{\infty}\left(\left(\frac{n^{2}-1}{n^{2}}\right)^{2\left(n^{2}-1\right)}\left(\frac{n+1}{n-1}\right)^{n}\right)=\pi
$$

Solution:

Fix an integer $n \geq 2$ and define for integer $i \geq 2$,

$$
\begin{gathered}
s(i)=\ln \left(\left(\frac{i^{2}-1}{i^{2}}\right)^{2\left(i^{2}-1\right)}\left(\frac{i+1}{i-1}\right)^{i}\right) \\
\text { If } S(n)=\sum_{i=2}^{n+1} s(i), \text { then } \lim _{n \rightarrow \infty} S(n)=\ln \prod_{n=2}^{\infty}\left(\left(\frac{n^{2}-1}{n^{2}}\right)^{2\left(n^{2}-1\right)}\left(\frac{n+1}{n-1}\right)^{n}\right),
\end{gathered}
$$

and so the proposed product is equal to e^{S}, where $S=\lim _{n \rightarrow \infty} S(n)$.

$$
\begin{gathered}
s(i)=2\left(i^{2}-1\right) \ln \left(\frac{i^{2}-1}{i^{2}}\right)+i \ln (i+1)-i \ln (i-1) \\
=\left(2\left(i^{2}-1\right)-i\right) \ln (i-1)-4\left(i^{2}-1\right) \ln i+\left(2\left(i^{2}-1\right)+i\right) \ln (i+1) \\
S(n)=\sum_{i=2}^{n+1} s(i)=\sum_{i=2}^{n+2} c(i) \ln (i)
\end{gathered}
$$

with $c(i)$ polynomial functions in i.
We claim

$$
c(i)=\left\{\begin{array}{ll}
1 & \text { if } i=2 \tag{1}\\
2 & \text { for } 3 \leq i \leq n \\
-2 n^{2}-7 n-2 & \text { if } i=n+1 \\
2 n^{2}+5 n+1 & \text { if } i=n+2 \\
0 & \text { for } i>n+2
\end{array}\right\}
$$

The proof of (1) is straightforward. For example for $3 \leq i \leq n$ the contribution to $c(i)$ from $s(i-1), s(i)$, and $s(i+1)$ respectively, is $2\left((i-1)^{2}-1\right)+i-1$, $-4\left(i^{2}-1\right)$, and $2\left((i+1)^{2}-1\right)-(i+1)$ which sums to 2 as required. Proofs of the other cases of (1) are treated similarly.

It follows from (1) that

$$
\begin{align*}
& S(n)=\ln \left(2\left(\frac{n!}{2}\right)^{2}(n+1)^{-2 n^{2}-7 n-2}(n+2)^{2 n^{2}+5 n+1}\right) \tag{2}\\
& S(n)=\ln \left(\frac{(n!)^{2}}{2}\left(\frac{n+2}{n+1}\right)^{2 n^{2}+5 n+1}\left(\frac{1}{n+1}\right)^{2 n+1}\right) \tag{3}
\end{align*}
$$

To evaluate (3) as $n \rightarrow \infty$ we use the following formulae:

$$
\left\{\begin{array}{ll}
(n!)^{2} \sim(2 \pi n)\left(\frac{n}{e}\right)^{2 n} & \text { Stirling's formula, } \tag{4}\\
\left(\frac{n+2}{n+1}\right)^{2 n^{2}+5 n+1} \sim e^{2 n+2} & \\
\left(\frac{1}{n+1}\right)^{2 n+1} \sim n^{-2 n-1} e^{-2} &
\end{array}\right\}
$$

The second equation in (4) follows by taking logarithms and using Taylor's formula:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \ln \left(e^{-2 n}\left(\frac{n+2}{n+1}\right)^{2 n^{2}+5 n+1}\right)= \\
= & \lim _{n \rightarrow \infty}\left(-2 n+\frac{2 n^{2}+5 n+1}{n+1}-\frac{1}{2} \frac{2 n^{2}+5 n+1}{(n+1)^{2}}+o(1)\right)=2
\end{aligned}
$$

proving the second formula in (3).
The third equation in (4) follows from the fact:

$$
\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{2 n+1}=e^{-2}
$$

Substituting the limits of (4) into (2) and performing some straightforward cancellations shows

$$
S=\lim _{n \rightarrow \infty} S(n)=\ln \pi
$$

from where the proposed product is obtained.

