Solution to Problem \# B-1044

Ángel Plaza \& Sergio Falcón Department of Mathematics, Universidad de Las Palmas de Gran Canaria 35017-Las Palmas G.C. SPAIN,

Problem\# B-1044 Proposed by Paul S. Bruckman, Sointula, Canada
Prove the following identities:
(1) $\left(L_{n}\right)^{2}=2\left(F_{n+1}\right)^{2}-\left(F_{n}\right)^{2}+2\left(F_{n-1}\right)^{2}$:
(2) $25\left(F_{n}\right)^{2}=2\left(L_{n+1}\right)^{2}-\left(L_{n}\right)^{2}+2\left(L_{n-1}\right)^{2}$.

Solution. We use the following relations between Fibonacci and Lucas numbers: $L_{n}=F_{n+1}+F_{n-1}$, and $5 F_{n}=L_{n+1}+L_{n-1}$, which follow directly from the Binet formulas.

Proof of (1): Since $L_{n}=F_{n+1}+F_{n-1}$, we have:

$$
\begin{aligned}
\left(L_{n}\right)^{2} & =\left(F_{n+1}\right)^{2}+\left(F_{n-1}\right)^{2}+F_{n+1} F_{n-1}+F_{n+1} F_{n-1} \\
& =\left(F_{n+1}\right)^{2}+\left(F_{n-1}\right)^{2}+F_{n+1}\left(F_{n+1}-F_{n}\right)+\left(F_{n}+F_{n-1}\right) F_{n-1} \\
& =2\left(F_{n+1}\right)^{2}+2\left(F_{n-1}\right)^{2}-F_{n}\left(F_{n+1}-F_{n-1}\right) \\
& =2\left(F_{n+1}\right)^{2}+2\left(F_{n-1}\right)^{2}-\left(F_{n}\right)^{2}
\end{aligned}
$$

Proof of (2): Since $5 F_{n}=L_{n+1}+L_{n-1}$, we have:

$$
\begin{aligned}
25\left(F_{n}\right)^{2} & =\left(L_{n+1}\right)^{2}+\left(L_{n-1}\right)^{2}+L_{n+1} L_{n-1}+L_{n+1} L_{n-1} \\
& =\left(L_{n+1}\right)^{2}+\left(L_{n-1}\right)^{2}+L_{n+1}\left(L_{n+1}-L_{n}\right)+\left(L_{n}+L_{n-1}\right) L_{n-1} \\
& =2\left(L_{n+1}\right)^{2}+2\left(L_{n-1}\right)^{2}-L_{n}\left(L_{n+1}-L_{n-1}\right) \\
& =2\left(L_{n+1}\right)^{2}+2\left(L_{n-1}\right)^{2}-\left(L_{n}\right)^{2}
\end{aligned}
$$

