Solution to Problem \# B-1045

Ángel Plaza \& Sergio Falcón Department of Mathematics, Universidad de Las Palmas de Gran Canaria 35017-Las Palmas G.C. SPAIN,

Problem\# B-1045 Proposed by H.-J. Seiffert, Berlin, Germany
Show that, for all positive integers n,

$$
\sum_{k=1}^{n} 4^{n-k} \frac{F_{k}}{F_{k+1}}\left(\prod_{j=k}^{n} \frac{F_{j}}{L_{j}}\right)^{2}=\frac{F_{n}}{F_{n+1}}
$$

Solution. By induction.
For $n=1$ the equality becomes trivial. Let us suppose the equality is true for integer n. Then for $n+1$ we have to prove that

$$
\sum_{k=1}^{n+1} 4^{n+1-k} \frac{F_{k}}{F_{k+1}}\left(\prod_{j=k}^{n+1} \frac{F_{j}}{L_{j}}\right)^{2}=\frac{F_{n+1}}{F_{n+2}}
$$

We denote by $(L H S)_{n+1}$ the Left-Hand Side (LHS) of the previous equality, that is for the case $n+1$, and respectively by $(L H S)_{n}$ for n. Then we have:

$$
(L H S)_{n+1}=\left(\frac{F_{n+1}}{L_{n+1}}\right)^{2}\left[4(L H S)_{n}+\frac{F_{n+1}}{F_{n+2}}\right]
$$

Where, by the induction hypothesis:

$$
\begin{aligned}
&(L H S)_{n+1}=\left(\frac{F_{n+1}}{L_{n+1}}\right)^{2}\left[4 \frac{F_{n}}{F_{n+1}}+\frac{F_{n+1}}{F_{n+2}}\right] \\
& 4 \frac{F_{n}}{F_{n+1}}+\frac{F_{n+1}}{F_{n+2}}=\frac{4 F_{n} F_{n+2}+F_{n+1}^{2}}{F_{n+1} F_{n+2}}=\frac{4 F_{n} F_{n+1}+4 F_{n} F_{n}+F_{n+1}^{2}}{F_{n+1} F_{n+2}} \\
&=\frac{\left(F_{n+1}+2 F_{n}\right)^{2}}{F_{n+1} F_{n+2}}=\frac{\left(F_{n+2}+F_{n}\right)^{2}}{F_{n+1} F_{n+2}} \\
&=\frac{\left(L_{n+1}\right)^{2}}{F_{n+1} F_{n+2}}
\end{aligned}
$$

And therefore,

$$
(L H S)_{n+1}=\left(\frac{F_{n+1}}{L_{n+1}}\right)^{2} \frac{\left(L_{n+1}\right)^{2}}{F_{n+1} F_{n+2}}=\frac{F_{n+1}}{F_{n+2}}
$$

Which proves the equality for the case $n+1$.

