923. Proposed by Eugen J. Ionascu, Columbus State University, Columbus, GA.

Let $\alpha \in(0,1)$ be an arbitrary irrational number. Construct a sequence $\left\{a_{n}\right\}$ of real numbers with the following two properties:
(a) $\left\{a_{n} \mid n \in \mathbb{N}\right\} \subset\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \cup\left\{\left.\frac{n-1}{n} \right\rvert\, n \in \mathbb{N}\right\}$,
(b) $\lim _{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=\alpha$.

Solution: (by Ángel Plaza, University of Las Palmas de Gran Canaria, 35017-Las Palmas G.C., Spain)

The sequence $\left\{a_{n}\right\}$ is constructed recursively as follows:
If $\alpha \in(0,1 / 2), a_{1}$ is the first number in the set $\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$, say $\frac{1}{m_{1}}$ such that $0<a_{1}=\frac{1}{m_{1}}<\alpha<\frac{1}{m_{1}-1} \leq 1 / 2$.

Otherwise, if $\alpha \in(1 / 2,1) a_{1}$ is the first number in the set $\left\{\left.\frac{n-1}{n} \right\rvert\, n \in \mathbb{N}\right\}$, say $\frac{m_{1}-1}{m_{1}}$ such that $1 / 2 \leq<\frac{m_{1}-2}{m_{1}-1}<\alpha<a_{1}=\frac{m_{1}-1}{m_{1}}<1$.

It is clear that a_{1} so defined verifies the first condition required and besides $\left|\alpha-a_{1}\right|<\frac{1}{m_{1}} \leq 1 / 2<1$. In addition, it follows straightforwardly that $2 \alpha-a_{1}$ belongs to the interval $(0,1)$.

Let us suppose now that we have already constructed $a_{1}, a_{2}, \ldots, a_{n-1}$. Let $\alpha_{n-1}=$ $n \alpha-\sum_{i=1}^{n-1} a_{i}$. The next term of the sequence we are looking for, a_{n} is defined as follows:

If $\alpha_{n-1} \in(0,1 / 2)$, then a_{n} is the first number in the set $\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$, say $\frac{1}{m_{n}}$ such that $0<a_{n}=\frac{1}{m_{n}}<\alpha_{n-1}<\frac{1}{m_{n}-1} \leq 1 / 2$.

Otherwise, if $\alpha_{n-1} \in(1 / 2,1) a_{n}$ is first number in the set $\left\{\left.\frac{n-1}{n} \right\rvert\, n \in \mathbb{N}\right\}$ say $\frac{m_{n}-1}{m_{n}}$ such that $1 / 2 \leq \frac{m_{n}-2}{m_{n}-1}<\alpha<a_{1}=\frac{m_{n}-1}{m_{n}}<1$.

Note that in both cases $\left|\alpha_{n-1}-a_{n}\right|<\frac{1}{m_{n}}<1$.
Let us prove now that $\lim _{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=\alpha$:

$$
\left|\alpha-\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right|=\left|\frac{n \alpha-\sum_{i=1}^{n-1} a_{i}-a_{n}}{n}\right|<\frac{1 / m_{n}}{n}<\frac{1}{n},
$$

which implies that $\lim _{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots a_{n}}{n}=\alpha$.

