Solution to CMJ Problem \# 925

Ángel Plaza and Sergio Falcón
Department of Mathematics, Universidad de Las Palmas de Gran Canaria 35017-Las Palmas G.C. SPAIN, aplaza@dmat.ulpgc.es
925. Proposed by Cezar Lupu (student), University of Bucharest, Bucharest, Romania and Tudorel Lupu (student), Decebal High School, Constanta, Romania.

Let f a twice differentiable function on \mathbb{R} with $f^{\prime \prime}$ continuous on $[0,1]$ such that

$$
\int_{0}^{1} f(x) d x=2 \int_{1 / 4}^{3 / 4} f(x) d x
$$

Prove that there exists an $x_{0} \in(0,1)$ such that $f^{\prime \prime}\left(x_{0}\right)=0$.
Solution: Bellow there are two proofs:
(1) Letting $g(x)=f(1 / 2+x)$ and

$$
G(t)=\int_{-t}^{t} g(x) d x-2 \int_{-t / 2}^{t / 2} g(x) d x
$$

then $G(0)=0$ and the required condition is equivalent to $G(1 / 2)=0$. Hence, by the Mean Value Theorem there is $t_{0} \in(0,1 / 2)$ such that $G^{\prime}\left(t_{0}\right)=0$. Since

$$
G^{\prime}(t)=g(t)-g(t / 2)-(g(-t / 2)-g(-t))
$$

then by the Mean Value Theorem, there are $\theta_{+} \in\left(t_{0} / 2, t_{0}\right)$ and $\theta_{-} \in\left(-t_{0},-t_{0} / 2\right)$ such that

$$
0=G^{\prime}\left(t_{0}\right)=g^{\prime}\left(\theta_{+}\right) t_{0} / 2-g^{\prime}\left(\theta_{-}\right) t_{0} / 2
$$

By applying again the Mean Value Theorem there is $\theta \in\left(\theta_{-}, \theta_{+}\right) \subset(-1 / 2,1 / 2)$ such that

$$
0=g^{\prime \prime}(\theta)\left(\theta_{+}-\theta_{-}\right)
$$

that is, letting $x_{0}=1 / 2+\theta \in(0,1), f^{\prime \prime}\left(x_{0}\right)=g^{\prime \prime}(\theta)=0$.
Note that the problem may be slightly generalized as follows: Given $a, b \in(0,1)$ with $a<b$, if f a twice differentiable function on \mathbb{R} with $f^{\prime \prime}$ continuous on $[0,1]$ such that

$$
\int_{0}^{1} f(x) d x=\frac{\int_{a}^{b} f(x) d x}{b-a}
$$

then there is some $x_{0} \in(0,1)$ such that $f^{\prime \prime}\left(x_{0}\right)=0$.
(2) The problem may be proved by contradiction and graphically as follows:
(a) If $f^{\prime \prime}(x)>0$ for all $x \in(0,1)$. Then $\int_{0}^{1} f(x) d x>\frac{\int_{1 / 4}^{3 / 4} f(x) d x}{1 / 2}$:

(b) If $f^{\prime \prime}(x)<0$ for all $x \in(0,1)$. Then $\int_{0}^{1} f(x) d x<\frac{\int_{1 / 4}^{3 / 4} f(x) d x}{1 / 2}$:

Remark: It is also true that if f a twice differentiable function on \mathbb{R} with $f^{\prime \prime}$ continuous on $[0,1]$ and there is a not empty subinterval $(a, b) \subset[0,1]$ such that $\int_{0}^{1} f(x) d x=\frac{\int_{a}^{b} f(x) d x}{b-a}$ there exists an $x_{0} \in(0,1)$ such that $f^{\prime \prime}\left(x_{0}\right)=0$.

