Proposed by Dorin Marghidanu, Colegiul National "A. I. Cuza", Corabia, Romania.

Consider the polynomial $f(x)=x^{4}-4 a x^{3}+6 b^{2} x^{2}-4 c^{3} x+d^{4}$, where a, b, c, and d are positive real numbers. Prove that if f has four positive roots, then $a>b>c>d$.

Solution: (by Ángel Plaza, University of Las Palmas de Gran Canaria, 35017-Las Palmas G.C., Spain)

Let us called $f_{4}(x)=x^{4}-4 a x^{3}+6 b^{2} x^{2}-4 c^{3} x+d^{4}$. Then $f_{4}^{\prime}(x)=$ $4\left(x^{3}-3 a x^{2}+3 b^{2} x-c^{3}\right)$, so $f_{4}^{\prime \prime}(x)=4 \cdot 3\left(x^{2}-2 a x+b^{2}\right)$.

Let us denote $f_{3}(x)=x^{3}-3 a x^{2}+3 b^{2} x-c^{3}$ and $f_{2}(x)=x^{2}-$ $2 a x+b^{2}$. Note that $f_{3}(x)$ and $f_{2}(x)$ have the same roots as $f_{4}^{\prime}(x)$ and $f_{4}^{\prime \prime}(x)$ respectively.

By hypothesis, $f_{4}(x)$ has four positive roots. Rolle's Theorem guarantees that $f_{3}(x)$ has three positive roots, and $f_{2}(x)$ has two positive roots. Moreover, if we denote by $r_{i, j}$ the j-th positive root of $f_{i}(x)$, then $r_{i, j}<r_{i-1, j}<r_{i, j+1}$. See Figure 1 in which a possible situation of the roots of these polynomials is presented.

Figure 1: Roots of polynomials f_{4}, f_{3}, and f_{2}

We know that $f_{2}(x)=x^{2}-2 a x+b^{2}$ has two positive roots, and hence $4 a^{2}-4 b^{2}>0$. Since a, b are positive, then $a>b$. The roots of f_{2} are $r_{21}=a-\sqrt{a^{2}-b^{2}}$ and $r_{21}=a+\sqrt{a^{2}-b^{2}}>a$, and $r_{21}<b<a<r_{21}$.

Suppose now, that $c \geq b>0$, then $f_{3}(x)=x^{3}-3 a x^{2}+3 b^{2} x-c^{3} \leq$ $x^{3}-3 b x^{2}+3 b^{2} x-b^{3}=(x-b)^{3}$. And therefore, the roots of $f_{3}, r_{3, j}$ verify $0<r_{3, j}<b$. But this statement is a contradiction with the fact that $b<a$, and at least one of the roots of f_{3} is greater than $r_{21}=a+\sqrt{a^{2}-b^{2}}>a$. See Figure 1. Therefore, $b>c$.

It remais to prove that $c>d$. Let us suppose that $d \geq c$. Since $a>b>c$, then

$$
\begin{aligned}
f_{4}(x) & =x^{4}-4 a x^{3}+6 b^{2} x^{2}-4 c^{3} x+d^{4} \\
& >x^{4}-4 a x^{3}+6 c^{2} x^{2}-4 c^{3} x+c^{4} \\
& =(x-c)^{4}+4(a-c) x^{3}
\end{aligned}
$$

But since $a \geq c$, then $(x-c)^{4}+4(a-c) x^{3} \geq 0$ for all positive real x, so $f_{4}(x)>0$ for all positive real x, and we have found a contradiction and the proof is complete.

Note that the same argument applies to the general case:

Consider the polynomial
$f_{n}(x)=x^{n}-\binom{n}{1} a_{1} x^{n-1}+\cdots+(-1)^{n-1}\binom{n}{n-1} a_{n-1}^{n-1} x+(-1)^{n} a_{n}^{n}$,
where $a_{1}, a_{2}, \ldots, a_{n}$ are positive real numbers. If f has n positive roots, then $a_{1}>a_{2}>\ldots>a_{n}$.

