881. Proposed by Kim McInturff, Santa Barbara, California.

Prove that for every positive integer n

$$
\sum_{k=0}^{n-1}\binom{2 k}{k}=\sum_{i=1}^{n} \frac{2 \sin \frac{2 i \pi}{3}}{\sqrt{3}}\binom{2 n}{n+i}
$$

Solution: (by José M. Pacheco and Ángel Plaza, University of Las Palmas de Gran Canaria, 35017-Las Palmas G.C., Spain)

First, notice that the coefficient $\frac{2}{\sqrt{3}} \sin \left(\frac{2 i \pi}{3}\right)$ takes the values $+1,-1,0,+1,-1,0, \ldots$, and thus the right-hand side (RHS) may be written as $\sum_{i=1}^{n} i_{[3]}\binom{2 n}{n+i}$, where $i_{[3]}$ represents, for $i=1,2, \ldots$, the successive values of the sequence $+1,-1,0,+1,-1,0, \ldots$

The equation may be proved by induction. For the first values of n we have:

- $n=1:\binom{0}{0}=+\binom{2}{2}=1$
- $n=2:\binom{0}{0}+\binom{2}{1}=+\binom{4}{2+1}-\binom{4}{2+2}=3$
- $n=3:\binom{0}{0}+\binom{2}{1}+\binom{4}{2}=+\binom{6}{3+1}-\binom{6}{3+2}+0\binom{6}{3+3}=9$

Let us suppose the expresion is true for n. Now, for $n+1$ it is:

$$
\begin{align*}
& (\text { LHS })=\sum_{k=0}^{n}\binom{2 k}{k}=\binom{2 n}{n}+\sum_{k=0}^{n-1}\binom{2 k}{k} \tag{1}\\
& (R H S)=\sum_{i=1}^{n+1} i_{[3]}\binom{2 n+2}{n+1+i} \tag{2}
\end{align*}
$$

By applying twice the Pascal's rule, $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$, then for every integer $m,\binom{2 n+2}{m}=\binom{2 n}{m-2}+2\binom{2 n}{m-1}+\binom{2 n}{m}$, and using this into Eq. (2) we have:

$$
\begin{aligned}
(\text { RHS })= & \binom{2 n}{n}+\overbrace{2\binom{2 n}{n+1}}+\underbrace{\binom{2 n}{n+2}} \\
& \overbrace{\binom{2 n}{n+1}}-2\binom{2 n}{n+2}-\binom{2 n}{n+3}+0+ \\
& +\binom{2 n}{n+3}+2\binom{2 n}{n+4}+\binom{2 n}{n+5}-\ldots \\
& +(n+1)_{[3]}\left[\binom{2 n}{2 n}+\binom{2 n}{2 n+1}+\binom{2 n}{2 n+2}\right]= \\
= & \binom{2 n}{n}+\binom{2 n}{n+1}-\binom{2 n}{n+2}+\binom{2 n}{n+4}-\binom{2 n}{n+5}+ \\
& \ldots+(n)_{[3]}\binom{2 n}{2 n}+c_{n+1}\binom{2 n}{2 n+1}+c_{n+2}\binom{2 n}{2 n+2}
\end{aligned}
$$

It is easy to see that the coefficient of the term $\binom{2 n}{2 n}$ is always $(n)_{[3]}$. On the other hand, the coefficients of the last two terms, noted by c_{n+1} and c_{n+2}, depend on the value of $(n+1)_{[3]}$, but these two terms are zero because the lower index is greater than the upper one.
Therefore, $(R H S)$ is the sum of $\binom{2 n}{n}+\sum_{i=1}^{n} i_{[3]}\binom{2 n}{n+i}$, and by the induction hypothesis $(R H S)=\binom{2 n}{n}+\sum_{k=0}^{n-1}\binom{2 k}{k}=\sum_{k=0}^{n}\binom{2 k}{k}=$ (LHS) and the proof is done.

