883. Proposed by Brian Bradie, Christopher Newport University, Newport News, Virginia.

Evaluate

> (a) $\int_{0}^{1} \frac{\ln (1+x)}{1+x^{2}} d x$
> (b) $\int_{0}^{1} \frac{\arctan x}{1+x} d x$

Solution: (by Ángel Plaza and Sergio Falcón, University of Las Palmas de Gran Canaria, 35017-Las Palmas G.C., Spain)

The required computation in (a), $\int_{0}^{1} \frac{\ln (1+x)}{1+x^{2}} d x$, appears in various tables and its evaluation was given as Problem A5 on the Sixty-Sixth William Lowell Putnam Competition (see The American Mathematical Monthly 113 (2006) 733-743, and also problem 11277 in the Monthly 115-8 (2008) 758-759):

$$
\int_{0}^{1} \frac{\ln (1+x)}{1+x^{2}} d x=\frac{\pi \ln 2}{8}
$$

Now the evaluation of integral in (b) follows straightforwardly from the fact that $(\ln (1+x) \arctan x)^{\prime}=\frac{\arctan x}{1+x}+\frac{\ln (1+x)}{1+x^{2}}$, and therefore

$$
\begin{aligned}
\int_{0}^{1} \frac{\arctan x}{1+x} d x & =[\ln (1+x) \arctan x]_{0}^{1}-\int_{0}^{1} \frac{\ln (1+x)}{1+x^{2}} d x= \\
& =\frac{\pi \ln 2}{4}-\frac{\pi \ln 2}{8}=\frac{\pi \ln 2}{8}
\end{aligned}
$$

