888. Proposed by Brian Bradie, Christopher Newport University, Newport News, Virginia.

Evaluate

$$
\lim _{n \rightarrow \infty} \prod_{k=1}^{n}\left(1+\frac{k}{n}\right)^{\sqrt{n / k^{3}}}
$$

Solution:

by Angel Plaza and Sergio Falcon
University of Las Palmas de Gran Canaria, 35017-Las Palmas
G.C., Spain

Let us call $L_{n}=\prod_{k=1}^{n}\left(1+\frac{k}{n}\right)^{\sqrt{n / k^{3}}}$ and $L=\lim _{n \rightarrow \infty} L_{n}$.
Then, by taking logarithms, we have:

$$
\begin{gathered}
\ln L_{n}=\sum_{k=1}^{n} \sqrt{\frac{n}{k^{3}}} \ln \left(1+\frac{k}{n}\right)=\sum_{k=1}^{n} \frac{\sqrt{\left(\frac{n}{k}\right)^{3}} \ln \left(1+\frac{k}{n}\right)}{n} \\
\ln L=\lim _{n \rightarrow \infty} \ln L_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\sqrt{\left(\frac{n}{k}\right)^{3}} \ln \left(1+\frac{k}{n}\right)}{n}=\int_{0}^{1} \frac{\ln (1+x)}{x^{3 / 2}} d x=I
\end{gathered}
$$

For solving the improper integral I we change $x=t^{2}, d x=2 t d t$ and then

$$
I=\int_{0}^{1} \frac{\ln \left(1+t^{2}\right)}{t^{3}} 2 t d t=2 \int_{0}^{1} \frac{\ln \left(1+t^{2}\right)}{t^{2}} d t
$$

Now, integrating by parts, with $u=\ln \left(1+t^{2}\right)$ and $d v=\frac{d t}{t^{2}}$ we obtain:

$$
\left.I=\frac{-2 \ln \left(1+t^{2}\right)}{t}\right]_{0}^{1}+2 \int_{0}^{1} \frac{2}{1+t^{2}} d t=-2 \ln 2+4 \arctan 1=\pi-2 \ln 2
$$

(Note that $\lim _{t \rightarrow 0^{+}} \frac{\ln \left(1+t^{2}\right)}{t}=0$).
Therefore, $L=e^{\pi-\ln 4}=\frac{e^{\pi}}{4}$.

