Problem No. 1811. (Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY.)

Given a connected graph G with vertices $v_{1}, v_{2}, \ldots, v_{n}$, let $d_{i, j}$ denote the distance from v_{i} to $v j$. (That is, $d_{i, j}$ is the minimal number of edges that must be traversed in traveling from v_{i} to v_{j}.) The Wiener index $W(G)$ of G is defined by

$$
W(G)=\sum_{1 \leq i<j \leq n} d_{i, j} .
$$

a. Find tghe Wiener index for the grid-like graph

\square
on $2 n$ vertices.
b. Find ghe Wiener index for the comb-like graph

on $2 n$ vertices.
Solution by José M. Pacheco and Ángel Plaza, University of Las Palmas de Gran Canaria, 35017-Las Palmas G.C., Spain
a. Let us number the nodes of the grid-like graph as in the figure

in which the following order $1<1^{*}<2<2^{*} \cdots(n-1)<(n-1)^{*}<n<$ n^{*} for the nodes is considered.

Then, the Wiener index for the grid-like graph is given by the expression

$$
\begin{aligned}
W(G) & =\sum_{j=1}^{n}\left(\sum_{k=1}^{j-1} 2(j-k)+\sum_{k=1}^{j}(j-k+1)+\sum_{k=1}^{j-1}(j-k+1)\right) \\
& =\sum_{j=1}^{n}\left(2 j^{2}-1\right)=2 \frac{n(n+1)(2 n+1)}{6}-n \\
& =\frac{2 n^{3}+3 n^{2}-2 n}{3}
\end{aligned}
$$

The reason for the expresion in brackets above comes from the fact that for each j between 1 and n, and for each k between 1 and $j-1, d_{k, j}=j-k$. Also for the nodes with astherisc, we have $d_{k^{*}, j^{*}}=j-k$. Now, the distance between node k and node j^{*} is $j-k+1$, while the distance between node k^{*} and node j is also $j-k+1$, but the range for k is now between 1 and $j-1$ because $j<j^{*}$.
b. The argument for the comb-like graph as similar as before, considering the figure

in which the same order for the nodes.
Then, the Wiener index for the comb-like graph is given by

$$
\begin{aligned}
W(G) & =\sum_{j=1}^{n}\left(\sum_{k=1}^{j-1}(j-k+2)+\sum_{k=1}^{j-1}(j-k)+\sum_{k=1}^{j}(j-k+1)+\sum_{k=1}^{j-1}(j-k+1)\right) \\
& =\sum_{j=1}^{n}\left(2 j^{2}+2 j-3\right)=2 \frac{n(n+1)(2 n+1)}{6}+2 \frac{n(n+1)}{2}-3 n \\
& =\frac{2 n^{3}+9 n^{2}-4 n}{3}
\end{aligned}
$$

The only difference with the grid-like graph is the distance between two nodes of the top of the comb-like graph. For this case, $d_{k, j}=j-k+2$ for each j between 1 and n, and for each k between 1 and $j-1$.

