Solution to MM Problem \# 1824

Ángel Plaza and José M. Pacheco
Department of Mathematics, Universidad de Las Palmas de Gran Canaria 35017-Las Palmas G.C. SPAIN,

Problem\# 1824 Proposed by Cezar Lupu, student, University of Bucharest, Bucharest, Romania. Let f be a continuous real-valued function defined on $[0,1]$ and satisfying

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1} x f(x) d x
$$

Prove that there exists a real number $c, 0<c<1$, such that

$$
c f(c)=\int_{0}^{c} x f(x) d x
$$

Solution. Condition

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1} x f(x) d x
$$

implies, by considering the Fourier series of function f in cosines, that both integrals are zero. The solution to the problem is therefore an immediate consequence of the following lemma:

Lemma. Let g be a continuous function on $[0,1]$ such that $\int_{0}^{1} g(x) d x=0$. Then there exists some $a=a_{g} \in(0,1)$ for which such that $g(a)=\int_{0}^{a} g(u) d u$.

Proof: If $g(x) \equiv 0$ in $[0,1]$, the result is obviously true: Any $a \in(0,1)$ will work. For any nonidentically zero continuous function $g(x)$, let us consider the first subinterval $\left[x_{0}, x_{1}\right] \subset$ $[0,1]$ where g presents constant sign -without loss of generality we can assume it to be positive- and has no zeroes in its interior.

Now, Let $h(x)=\int_{0}^{x} g(u) d u$. It is clear that $h\left(x_{0}\right)=0$ because $g(x) \equiv 0$ in the interval $\left[0, x_{0}\right]$, so $h\left(x_{0}\right)=\int_{0}^{x_{0}} g(u) d u=\int_{0}^{x_{0}} 0 d u=0$. Moreover, because $g(x)$ has constant sign in $\left[x_{0}, x_{1}\right]$, it holds that $h(x)$ is an strictly increasing function on $\left[x_{0}, x_{1}\right]$, so $h\left(x_{1}\right) \neq 0$. Condition $g\left(x_{1}\right)=0$ implies that from some $\xi \in\left(x_{0}, x_{1}\right)$ onwards, $g(x)$ decreases. Therefore, there must exist some $a=a_{g} \in\left(x_{0}, x_{1}\right)$ where the decreasing $g(x)$ and the increasing $h(x)$ take the same value.

