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Let �� be the smallest value of α for which there exists a positive constant C such that 
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for all positive integer n. 

a. Find the value of  ��. 
b. Prove that the sequence 
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is decreasing and find its limit. 
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Since the inequality must be satisfied for all n ∈ ℕ, if it is true for the maximum value of A, it will 
happen the same in all cases. Therefore: 
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When n tends to infinite, if we use Stirling at the numerator and the denominator: 
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which implies that  �� = ��. 
b) 

If the sequence is decreasing, each term must be smaller than the previous one. Hence: 
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Now we find the limit of the sequence: 
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Again, we use Stirling: 

lim�⟶�
1√
 2��
��!"��2#
�2
���!"��√4#
 = √# lim�⟶�


√
√
 = √# 
 

Notice that since 5&�6 is decreasing, then 
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we deduce that the 	 from a) must be ≥ 2. 
 

 

 

 


