1828. Proposed by Stephen J. Herschkorn, Department of Statistics, Rutgers University,

New Brunswick, NJ.
Let α_{0} be the smallest value of α for which there exists a positive constant C such that

$$
\prod_{k=1}^{n} \frac{2 k}{2 k-1} \leq C n^{\alpha}
$$

for all positive integer n.
a. Find the value of α_{0}.
b. Prove that the sequence

$$
\left\{\frac{1}{n^{\alpha_{0}}} \prod_{k=1}^{n} \frac{2 k}{2 k-1}\right\}_{n=1}^{\infty}
$$

is decreasing and find its limit.
SOLUTION: By Santiago de Luxán (student) and Ángel Plaza, University of Las Palmas de Gran Canaria, 35017-Las Palmas G.C., Spain
a)

$$
A=\prod_{k=1}^{n} \frac{2 k}{2 k-1}=\frac{(2 n)!!}{(2 n-1)!!} \leq C n^{\alpha}
$$

Since the inequality must be satisfied for all $n \in \mathbb{N}$, if it is true for the maximum value of A, it will happen the same in all cases. Therefore:

$$
\frac{(2 n)!!}{(2 n-1)!!}=\frac{(2 n)!!}{\frac{(2 n-1)!}{(2 n-2)!!}}=\frac{[(2 n)!]^{2}}{2 n(2 n-1)!}=\frac{2^{2 n}[n!]^{2}}{(2 n)!}
$$

When n tends to infinite, if we use Stirling at the numerator and the denominator:

$$
\frac{2^{2 n}[n!]^{2}}{(2 n)!} \sim \frac{2^{2 n} n^{n} e^{-2 n} 2 \pi n}{(2 n)^{2 n} e^{-2 n} \sqrt{4 \pi n}}=\sqrt{\pi} \frac{n}{\sqrt{n}}=\sqrt{\pi} n^{\frac{1}{2}}
$$

which implies that $\alpha_{0}=\frac{1}{2}$.
b)

If the sequence is decreasing, each term must be smaller than the previous one. Hence:

$$
\begin{gathered}
\frac{a_{n+1}}{a_{n}} \leq 1 \\
\frac{a_{n+1}}{a_{n}}=\frac{\frac{1}{\sqrt{n+1}} \prod_{k=1}^{n+1} \frac{2 k}{2 k-1}}{\frac{1}{\sqrt{n}} \prod_{k=1}^{n} \frac{2 k}{2 k-1}}=\sqrt{\frac{n}{n+1}} \frac{\prod_{k=1}^{n} \frac{2 k}{\prod_{k=1}^{n} \frac{2 k-1}{2 k-1}} \frac{2(n+1)}{2(n+1)-1}=\sqrt{\frac{n}{n+1}} \frac{2 n+2}{2 n+1}}{=} \\
=2 \frac{\sqrt{n(n+1)}}{2 n+1}=\sqrt{\frac{4 n^{2}+4 n}{4 n^{2}+4 n+1}} \leq 1 \text { for all } n \in \mathbb{N}
\end{gathered}
$$

Now we find the limit of the sequence:

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \prod_{k=1}^{n} \frac{2 k}{2 k-1}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \frac{(2 n)!!}{(2 n-1)!!}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \frac{2^{2 n}[n!]^{2}}{(2 n)!}
$$

Again, we use Stirling:

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \frac{2^{2 n} n^{2 n} e^{-2 n} 2 \pi n}{(2 n)^{2 n} e^{-2 n} \sqrt{4 \pi n}}=\sqrt{\pi} \lim _{n \rightarrow \infty} \frac{n}{\sqrt{n} \sqrt{n}}=\sqrt{\pi}
$$

Notice that since $\left\{a_{n}\right\}$ is decreasing, then

$$
\begin{gathered}
a_{1}=2 \geq a_{n} \geq \sqrt{\pi} \\
2 \geq \frac{\prod_{k=1}^{n} \frac{2 k}{2 k-1}}{\sqrt{n}} \geq \sqrt{\pi} \\
\sqrt{\pi} \sqrt{n} \leq \prod_{k=1}^{n} \frac{2 k}{2 k-1} \leq 2 \sqrt{n} \text { for all } n \in \mathbb{N}
\end{gathered}
$$

we deduce that the C from a) must be ≥ 2.

