1828. Proposed by Stephen J. Herschkorn, Department of Statistics, Rutgers University,
New Brunswick, NJ.
Let ay be the smallest value of a for which there exists a positive constant C such that
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for all positive integer ».
a. Find the value of «,.
b. Prove that the sequence

is decreasing and find its limit.

SOLUTION: By Santiago de Luxdn (student) and Angel Plaza, University of Las Palmas de
Gran Canaria, 35017-Las Palmas G.C., Spain
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Since the inequality must be satisfied for all n € N, if it is true for the maximum value of A, it will
happen the same in all cases. Therefore:
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When n tends to infinite, if we use Stirling at the numerator and the denominator:

22npl)2 22'pte2M2mn n 1
[ ] = \/E— = \/Enf
n

@n)! ~ (2n)me-2nyAmn v
which implies that a, = %
b)
If the sequence is decreasing, each term must be smaller than the previous one. Hence:
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Now we find the limit of the sequence:
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Again, we use Stirling:
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Notice that since {a,,} is decreasing, then
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we deduce that the C from a) must be = 2.



