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Problem# 1829 Proposed by Oleh Faynshteyn, Leipzig, Germany. Let ABC be a triangle
with BC = a, CA = b, andAB = c. Let ra denote the radius of the excircle tangent to
BC, rb the radius of the excircle tangent toCA, andrc the radius of the excircle tangent to
AB. Prove that
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(a + b)2
+

rbrc

(b + c)2
+
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(c + a)2
≥

9
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Solution. Let s andS be respectively the semi-perimeter and area of triangleABC. It is

well known thatra =
S

s − a
, rb =

S

s − b
, rc =

S

s − c
, andS2 = s(s − a)(s − b)(s − c).

Using these relations, we readily simplify
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Lettinga = (y + z)/2, b = (x + z)/2, andc = (x + y)/2 we obtain
2z

(x + y + 2z)2
+

2x

(2x + y + z)2
+

2y

(x + 2y + z)2
≥

9

8(x + y + z)

Clearing the denominators and simplyfing we get

210(x3y2z + x3yz2 + x2y3z + xy2z3 + x2yz3 + xy3z2)

+666x2y2z2

≥ 20(x6 + y6 + z6) + 76(x5y + x5z + y5z + yz5 + xy5 + xz5) +

133(x4z2 + x2y4 + x4y2 + x2z4 + y4z2 + y2z4) + 50(x4yz + xy4z + xyz4) +

154(x3y3 + x3z3 + y3z3)

Now, using the notation[α, β, γ] =
∑

sym

xαyβzγ, previous expression may be written as:

210[3, 2, 1] + 111[2, 2, 2] ≥ 10[6, 0, 0] + 76[5, 1, 0] + 133[4, 2, 0] + 25[4, 1, 1] + 77[3, 3, 0]

Each sequence into the brackets of the right-hand side majorises every sequence into the
brackets of the left-hand side of the last inequality. For example(3, 3, 0) ≻ (3, 2, 1). There-
fore thereversed inequality
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holds by Muirheads inequality. Finally, note that since thesum of the coefficients is the
same in both sides, the equality holds if and only ifx = y = z that is when the triangle is
equilateral. ¤
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