Solution to MM Problem \# 1829

Ángel Plaza and Sergio Falcón
Department of Mathematics, Universidad de Las Palmas de Gran Canaria 35017-Las Palmas G.C. SPAIN,

Problem\# 1829 Proposed by Oleh Faynshteyn, Leipzig, Germany. Let $A B C$ be a triangle with $B C=a, C A=b$, and $A B=c$. Let r_{a} denote the radius of the excircle tangent to $B C, r_{b}$ the radius of the excircle tangent to $C A$, and r_{c} the radius of the excircle tangent to $A B$. Prove that

$$
\frac{r_{a} r_{b}}{(a+b)^{2}}+\frac{r_{b} r_{c}}{(b+c)^{2}}+\frac{r_{c} r_{a}}{(c+a)^{2}} \geq \frac{9}{16}
$$

Solution. Let s and S be respectively the semi-perimeter and area of triangle $A B C$. It is well known that $r_{a}=\frac{S}{s-a}, r_{b}=\frac{S}{s-b}, r_{c}=\frac{S}{s-c}$, and $S^{2}=s(s-a)(s-b)(s-c)$. Using these relations, we readily simplify

$$
\frac{(s-c)}{(a+b)^{2}}+\frac{(s-a)}{(b+c)^{2}}+\frac{(s-b)}{(c+a)^{2}} \geq \frac{9}{16 s}
$$

Letting $a=(y+z) / 2, b=(x+z) / 2$, and $c=(x+y) / 2$ we obtain

$$
\frac{2 z}{(x+y+2 z)^{2}}+\frac{2 x}{(2 x+y+z)^{2}}+\frac{2 y}{(x+2 y+z)^{2}} \geq \frac{9}{8(x+y+z)}
$$

Clearing the denominators and simplyfing we get

$$
\begin{aligned}
& 210\left(x^{3} y^{2} z+x^{3} y z^{2}+x^{2} y^{3} z+x y^{2} z^{3}+x^{2} y z^{3}+x y^{3} z^{2}\right) \\
& +666 x^{2} y^{2} z^{2} \\
& \geq 20\left(x^{6}+y^{6}+z^{6}\right)+76\left(x^{5} y+x^{5} z+y^{5} z+y z^{5}+x y^{5}+x z^{5}\right)+ \\
& 133\left(x^{4} z^{2}+x^{2} y^{4}+x^{4} y^{2}+x^{2} z^{4}+y^{4} z^{2}+y^{2} z^{4}\right)+50\left(x^{4} y z+x y^{4} z+x y z^{4}\right)+ \\
& 154\left(x^{3} y^{3}+x^{3} z^{3}+y^{3} z^{3}\right)
\end{aligned}
$$

Now, using the notation $[\alpha, \beta, \gamma]=\sum_{\text {sym }} x^{\alpha} y^{\beta} z^{\gamma}$, previous expression may be written as:

$$
210[3,2,1]+111[2,2,2] \geq 10[6,0,0]+76[5,1,0]+133[4,2,0]+25[4,1,1]+77[3,3,0]
$$

Each sequence into the brackets of the right-hand side majorises every sequence into the brackets of the left-hand side of the last inequality. For example $(3,3,0) \succ(3,2,1)$. Therefore the reversed inequality

$$
\frac{r_{a} r_{b}}{(a+b)^{2}}+\frac{r_{b} r_{c}}{(b+c)^{2}}+\frac{r_{c} r_{a}}{(c+a)^{2}} \leq \frac{9}{16}
$$

holds by Muirheads inequality. Finally, note that since the sum of the coefficients is the same in both sides, the equality holds if and only if $x=y=z$ that is when the triangle is equilateral.

