2005. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania.

Let $f:[0, \infty)(0, \infty)$ be an increasing, differentiable function with continuous derivative, and let k be a nonnegative integer. Prove that

$$
\int_{0}^{\infty} \frac{x^{k}}{f(x)} d x
$$

converges if and only if

$$
\int_{0}^{\infty} \frac{x^{k}}{f(x)+f^{\prime}(x)} d x
$$

converges.

Solution: (by José Miguel Pacheco and Ángel Plaza, ULPGC, 35017-Las Palmas G.C., Spain, e-mail: pacheco@dma.ulpgc.es, aplaza@dmat.ulpgc.es)

The \Rightarrow part is immediate: If the first integral converges, the second one also converges:
The condition of growing f is expressed as $f^{\prime}(x)>0$ for every $x>0$, therefore the denominator in the second integrand is larger than that in the first one, and the theorem on dominated convergence immediately applies.

The \Leftarrow part is an exercise on orders of infinity. The first integral is convergent for $f(x) \approx x^{k+1+\epsilon}$, and the second one, for $f(x)+f^{\prime}(x) \approx x^{k+1+\epsilon}$. But the order of infinity of $f^{\prime}(x)$ is always one unit less than the order of $f(x)$, so the infinity order of $f(x)+f^{\prime}(x)$ is the same as that of $f(x)$. Therefore, if the second integral converges, so does the first one.

Appendix

The order of infinity of $f^{\prime}(x)$ is one unit less than that of $f(x)$.
It is a consequence of the formal Taylor development up to the first
order: From $f(x+a)=f(x)+a f^{\prime}(x+\theta)$ it follows that:

$$
\begin{aligned}
f^{\prime}(x+\theta) & =\frac{f(x+a)-f(x)}{a}=(x+a) \frac{f(x+a)-f(x)}{(x+a) a} \\
& =\left(1+\frac{x}{a}\right) \frac{f(x+a)-f(x)}{x+a} .
\end{aligned}
$$

In this last expression, let first $a \rightarrow \infty$, and then $x \rightarrow \infty$, to obtain $f^{\prime}(x) \approx \frac{f(x)}{x}$.

Reference

DuBois-Reymond, Paul (1875) Uber asymptotische Werthe, infinitare Approximationen und infinitare Auflosung von Gleichungen, Mathematische Annalen, 8, 363-414.
The above computation is in pages 368-369.

