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For positive integer n, let

Pn(x, y) =

n
∑

k=0

(

2n + 1

2k + 1

)

xn−k(x + y)k.

Find a closed form expression for the coefficient of xiyj when Pn is expanded.

Solution:

Since (x + y)k =

k
∑

j=0

(

k

j

)

xk−jyj , then
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n
∑

k=0

(
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)

xn−k

k
∑

j=0

(

k

j

)

xk−jyj

=

n
∑

k=j

(

2n + 1

2k + 1

)(

k

j

)

xn−jyj

Note that all the terms when Pn is expanded are of the form xn−jyj . We

will prove, by using the snake oil method [1] that

n
∑

k=j

(

2n + 1

2k + 1

)(

k

j

)

= 4n−j

(

2n − j

j

)

(1)

In order to show previous identity we will obtain the generating funcion of both

sides of Eq. (1). We will use the following identity (see [1, Eq. (4.3.1), page

120]);
∑

r≥0
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r

k

)

xr =
xk

(1 − x)k+1
(k ≥ 0)
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∑
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j

)

√
x
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1
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Now we will obtain the generating function for the right-hand side of Eq. (1):

G(x) =
∑

n≥0
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j

)

xn

=
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and Identity (1) is done. �

References

[1] Herbert S. Wilf, Generatingfunctionology, Academic Press, Inc., Second ed.

1994.

c© The Mathematical Association of America

Submitted to Mathematics Magazine

2


