A Mean Value Formula

2010-1. Proposed by Cezar Lupu, student, University of Bucharest, Bucharest and Vicenţiu Rădulescu, Institute of Mathematics Simion Stoilow of the Romanian Academy, Bucharest, Romania.

Let $f:[0,1] \rightarrow \mathbb{R}$ be a twice differentiable function with $f^{\prime \prime}$ continuous such that $f(0)=f(1)$. Show that there exists $\xi \in(0,1)$ such that

$$
\xi^{2} f(\xi)=2 \int_{0}^{\xi} x f(x) d x .
$$

Solution: by Ángel Plaza and Sergio Falcón, Department of Mathematics, Universidad de Las Palmas de Gran Canaria, 35017-Las Palmas G.C. SPAIN, aplaza@dmat.ulpgc.es.

Let us consider function $h(t)=\int_{0}^{t} x^{2} f^{\prime}(x) d x$. Since $h(t)=t^{2} f(t)-$ $2 \int_{0}^{t} x f(x) d x$, the question is equivalent to the existence of $\xi \in(0,1)$ such that $h(\xi)=0$.

By hypothesis of the problem $f(0)=f(1)$. If function f is constant in some subinterval $[0, a] \subset[0,1]$, the problem is trivial. In other case, we can suppose without loss of generality that $f(t) \neq f(0)$ for all $t \in(0,1)$. Otherwise we would consider the same question for the interval $[0, a] \subset[0,1]$, being a the first point in $(0,1)$ with $f(a)=f(0)$.

Since $f(t) \neq f(0)$ for all $t \in(0,1)$, let us suppose WLOG that $f(t)>$ $f(0) \geq 0$ for all $t \in(0,1)$. By Rolle's theorem, there is a point $c \in(0,1)$ such that $f^{\prime}(c)=0$. We can suppose WLOG that $\operatorname{sign}\left(f^{\prime}(t)\right)$ is positive for all $t \in(0, c)$, and also is positive $\operatorname{sign}\left(t^{2} f^{\prime}(t)\right)$ in the same interval.

Note that $h(0)=0, h(c)>0$ and $h(1)=\int_{0}^{1} x^{2} f^{\prime}(x) d x<\int_{0}^{1} f^{\prime}(x) d x=$ $f(1)-f(0)=0$. Hence, by Bolzano's theorem there is a point $\xi \in(c, 1)$ such that $h(\xi)=0$. Notice that apparently the hypothesis of $f^{\prime \prime}$ continuous is superfluous.

