A Mean Value Formula

2010-1. Proposed by Cezar Lupu, student, University of Bucharest, Bucharest and Vicențiu Rădulescu, Institute of Mathematics Simion Stoilow of the Romanian Academy, Bucharest, Romania.

Let $f : [0,1] \to \mathbb{R}$ be a twice differentiable function with f'' continuous such that f(0) = f(1). Show that there exists $\xi \in (0,1)$ such that

$$\xi^2 f(\xi) = 2 \int_0^\xi x f(x) dx.$$

Solution: by Ángel Plaza and Sergio Falcón, Department of Mathematics, Universidad de Las Palmas de Gran Canaria, 35017–Las Palmas G.C. SPAIN, aplaza@dmat.ulpgc.es.

Let us consider function $h(t) = \int_0^t x^2 f'(x) dx$. Since $h(t) = t^2 f(t) - 2 \int_0^t x f(x) dx$, the question is equivalent to the existence of $\xi \in (0, 1)$ such that $h(\xi) = 0$.

By hypothesis of the problem f(0) = f(1). If function f is constant in some subinterval $[0, a] \subset [0, 1]$, the problem is trivial. In other case, we can suppose without loss of generality that $f(t) \neq f(0)$ for all $t \in (0, 1)$. Otherwise we would consider the same question for the interval $[0, a] \subset [0, 1]$, being a the first point in (0, 1) with f(a) = f(0).

Since $f(t) \neq f(0)$ for all $t \in (0, 1)$, let us suppose WLOG that $f(t) > f(0) \ge 0$ for all $t \in (0, 1)$. By Rolle's theorem, there is a point $c \in (0, 1)$ such that f'(c) = 0. We can suppose WLOG that $\operatorname{sign}(f'(t))$ is positive for all $t \in (0, c)$, and also is positive $\operatorname{sign}(t^2 f'(t))$ in the same interval.

Note that h(0) = 0, h(c) > 0 and $h(1) = \int_0^1 x^2 f'(x) dx < \int_0^1 f'(x) dx = f(1) - f(0) = 0$. Hence, by Bolzano's theorem there is a point $\xi \in (c, 1)$ such that $h(\xi) = 0$. Notice that apparently the hypothesis of f'' continuous is superfluous.