Problem No. 1806. (Proposed by Michael Becker, University of South Carolina at Sumter, Sumter, SC.)

The intersection of the ellipsoid $x^{2}+y^{2}+\frac{z^{2}}{c^{2}}=1$ and the plane $x+y+c z=0$ is an ellipse. For $c>1$, find the value of c for which the area of the ellipse is maximal.

Solution by José M. Pacheco and Ángel Plaza, University of Las Palmas de Gran Canaria, 35017-Las Palmas G.C., Spain

The plane $x+y+c z=0$ intersects the $X Y$ plane along its secondary diagonal, and the dihedral angle depends on c. Because the given ellipsoid is a revolution surface around the $O Z$ axis (for $c=1$ it becomes a sphere) the problem can be cast in a simpler form. Indeed, for $c=1$ the problem boils down to the computation of the area of a circle.

Figure 1: Geometry of the problem after rotating about the $0 Z$ axis
To make things easier, let us rotate everything through $\frac{\pi}{4}$ radians around the $O Z$ axis, so the plane $x+y+c z=0$ can be changed into $\sqrt{2} y+c z=0$ intersecting the $X Y$ plane along the $O X$ axis. The orthogonal vector to this plane is $(0, \sqrt{2}, c)$, so all straight lines with base point in the $O X$ axis and having $(0,-c, \sqrt{2})$ as their common direction vector lie on $\sqrt{2} y+c z=0$ at right angles with $O X$. See Figure 1. The parametric equations of this line
family are:

$$
\left\{\begin{array}{l}
x=x_{0} \\
y=-c \lambda \\
z=\sqrt{2} \lambda
\end{array}\right.
$$

By plugging these values in the ellipsoid equation we obtain $x_{0}^{2}+c^{2} \lambda^{2}+$ $\frac{2 \lambda^{2}}{c^{2}}=1$, or else $\lambda^{2}\left(c^{2}+\frac{2}{c^{2}}\right)=1-x_{0}^{2}$, from where $\lambda^{2}=\left(c^{2}+\frac{2}{c^{2}}\right)^{-1 / 2} \sqrt{1-x_{0}^{2}}$.

For any $x \in[-1,1]$, this choice of λ yields a point lying both in the straight line and on the ellipsoid, (i.e. in the curve we are looking for), say $P_{\lambda}\left(x_{0}\right)$: Actually there are two of them, but one is enough for our purpose. The plane area enclosed by the curve is given by

$$
A(c)=4 \int_{0}^{1} \operatorname{dist}\left[\left(x_{0}, 0,0\right), P_{\lambda}\right] d x_{0}
$$

In this formula we shall use the fact that

$$
\operatorname{dist}^{2}\left[\left(x_{0}, 0,0\right), P_{\lambda}\right]=\left(c^{2}+2\right) \lambda^{2}=\left(c^{2}+2\right) \frac{1-x_{0}^{2}}{c^{2}+\frac{2}{c^{2}}}=G(c)\left(1-x_{0}^{2}\right)
$$

Figure 2: Graph of $g(c)$
Therefore, $A(c)=4 g(c) \int_{0}^{1}\left(1-x_{0}^{2}\right)^{1 / 2} d x_{0}=k g(c)$, where the constant $k=4 \int_{0}^{1}\left(1-x_{0}^{2}\right)^{1 / 2} d x_{0}$, and $g(c)=\sqrt{G(c)}=\left(\frac{c^{4}+2 c^{2}}{c^{4}+2}\right)^{1 / 2}$.

Thus, $A(c)$ has a maximum if and only if $g(c)$ has one. The graph of $g(c)$ is shown in Figure 2. A "little algebra" yields that $g^{\prime}(c)=0$ has the unique real solution $c_{\max }=(1+\sqrt{3})^{1 / 2}>1$.

