PROBLEM OF THE WEEK

Problem No. 13 (Fall 2010 Series)

Let f be a non-negative, continuous function on the interval $0 \leq x \leq 1$, and suppose that

$$
\int_{0}^{x} f(t) d t \geq f(x)
$$

for all such x. Prove that f vanishes identically.

Solution: by Ángel Plaza ULPGC, Spain

Since f is a non-negative continuous function on the interval $0 \leq x \leq 1$, then $F(x)=\int_{0}^{x} f(t) d t$ also is a non-negative continuous function on the interval $0 \leq x \leq 1$.
Therefore,

$$
\int_{0}^{x} f(t) d t \geq f(x) \Rightarrow \int_{0}^{x}\left(\int_{0}^{t} f(s) d s\right) d t \geq \int_{0}^{x} f(t) d t
$$

But the left-hand side integral in the last inequality, by Cauchy's reult may be written as $\int_{0}^{x}\left(\int_{0}^{t} f(s) d s\right) d t=\int_{0}^{x}(x-t) f(t) d t$, and hence the last inequality becomes

$$
\begin{aligned}
\int_{0}^{x}(x-t) f(t) d t & \geq \int_{0}^{x} f(t) d t \\
\int_{0}^{x} f(t) d t \geq \int_{0}^{x}(x-t) f(t) d t & \geq \int_{0}^{x} f(t) d t
\end{aligned}
$$

which it is true if and only if f vanishes identically.

